CRII: RI: Immune-Inspired Learning Foundations of Neural Network General Robustness

CRII:RI:神经网络一般鲁棒性的免疫启发学习基础

基本信息

  • 批准号:
    2246157
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Driven by rapid advances in neural networks (NNs), artificial intelligence has achieved remarkable success in many fields. However, small perturbations invisible to humans can be purposely added to inputs to cause NNs to make incorrect predictions. What is more, attackers can even customize different perturbation strategies to bypass existing NNs' learning methods and defenses. Thus, one open question is how to make NNs more robust to multiple types of such adversarial perturbations. Humans have a highly evolved immune system that can defend against multiple threats, even those never encountered before. Inspired by the powerful immune system, this project aims to infuse key immune system principles into NNs to improve their general robustness, that is, their capability to defend against multiple types of perturbations. The research outcomes will benefit fields that demand robust NNs, such as public health and autonomous driving. Furthermore, this project is planned to support cross-disciplinary education and research projects (involving machine learning and biology) for both undergraduate and graduate students, with outreach activities to high schools and particularly students from underrepresented groups.To reduce the substantial gap between existing machine-centric robust learning frameworks and robust immune models, this project focuses on incorporating into neural network design three robust immune-system components to help neural networks defend themselves against various attacks and continuously harden themselves. The proposed research consists of three aims. The first aim is to develop an immune-inspired population-point hybrid optimization that can effectively search for robust solutions and maintain the searching efficiency via a self-adversarial mode connectivity strategy. The developed technique will improve existing point-based learning approaches, which easily become trapped in bad local minima. The second aim considers neural network learning from a robust immune consensus perspective that incorporates stochasticity into learning, allowing NNs to capture global feature information. The third aim expands the first two aims by allowing NNs to adapt to unforeseen types of adversarial attacks with an immune-system-inspired lifelong learning regime consisting of a warm start defense strategy and knowledge distillation-based memory model update. This research effort will enable a new understanding of and a design framework for robust machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在神经网络(NN)快速发展的推动下,人工智能在许多领域取得了令人瞩目的成功。然而,人类看不见的小扰动可以故意添加到输入中,导致神经网络做出错误的预测。更重要的是,攻击者甚至可以定制不同的扰动策略来绕过现有神经网络的学习方法和防御。因此,一个悬而未决的问题是如何使神经网络对多种类型的对抗性扰动更加鲁棒。人类拥有高度进化的免疫系统,可以防御多种威胁,甚至是以前从未遇到过的威胁。受强大的免疫系统的启发,该项目旨在将关键的免疫系统原理注入神经网络,以提高其总体鲁棒性,即抵御多种类型扰动的能力。研究成果将使需要强大神经网络的领域受益,例如公共卫生和自动驾驶。此外,该项目计划支持本科生和研究生的跨学科教育和研究项目(涉及机器学习和生物学),并向高中,特别是来自弱势群体的学生开展推广活动。该项目以稳健的学习框架和稳健的免疫模型为中心,重点将三个稳健的免疫系统组件融入到神经网络设计中,帮助神经网络防御各种攻击并不断强化自身。拟议的研究包括三个目标。第一个目标是开发一种受免疫启发的群体点混合优化,可以有效地搜索稳健的解决方案,并通过自对抗模式连接策略保持搜索效率。所开发的技术将改进现有的基于点的学习方法,这些方法很容易陷入不良的局部最小值。第二个目标从稳健的免疫共识角度考虑神经网络学习,将随机性纳入学习中,使神经网络能够捕获全局特征信息。第三个目标扩展了前两个目标,允许神经网络通过免疫系统启发的终身学习机制(包括热启动防御策略和基于知识蒸馏的记忆模型更新)来适应不可预见类型的对抗性攻击。这项研究工作将使人们对强大的机器学习有一个新的理解和设计框架。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ren Wang其他文献

Virtual Reality as a Measure to Reduce Stress of Night-Shift Anesthesiologists: Study Protocol for a Cross-Over Design Trial
虚拟现实作为减轻夜班麻醉师压力的措施:交叉设计试验的研究方案
  • DOI:
    10.21203/rs.3.rs-35071/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chaojin Chen;Liubing Chen;Ning Shen;Chen;Ren Wang;Hongyi Fang;Qi Zhang;Z. Hei
  • 通讯作者:
    Z. Hei
Reinforcement learning-based detection method for malware behavior in industrial control systems
基于强化学习的工控系统恶意软件行为检测方法
Inverse Design Method for Horn Antennas Based on Knowledge-Embedded Physics-Informed Neural Networks
基于知识嵌入式物理信息神经网络的喇叭天线逆向设计方法
The effect of ultrasound on lipase-catalyzed regioselective acylation of mangiferin in non-aqueous solvents
超声对非水溶剂中脂肪酶催化芒果苷区域选择性酰化的影响
  • DOI:
    10.1080/10286020903431080
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jin Tian;Zhi Wang;Xiaofei Wei;Chunyuan Li;Zhao Bo;Tengfei Ji;Shugui Cao;Yalun Su;Ren Wang;Lei Wang
  • 通讯作者:
    Lei Wang
Novel Protein Hydrocolloids Constructed by Hydrophobic Rice Proteins and Walnut Proteins as Loading Platforms for Nutraceutical Models
由疏水性大米蛋白和核桃蛋白构建的新型蛋白亲水胶体作为营养模型的加载平台
  • DOI:
    10.1007/s11483-021-09680-0
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Fangsi Li;Tao Wang;Wei Feng;Ren Wang;Zhengxing Chen;Dalong Yi
  • 通讯作者:
    Dalong Yi

Ren Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ren Wang', 18)}}的其他基金

Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
  • 批准号:
    2319243
  • 财政年份:
    2023
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant

相似国自然基金

基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高通量FcεRI-IgE电化学免疫感器检测食品中20种常见过敏原的研究
  • 批准号:
    31901782
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
热中性温度调节肥大细胞外泌体分泌和 FcεRI表达的作用及分子机制
  • 批准号:
    81900014
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
神经损伤诱发IgG免疫复合物激活痛觉神经元FcγRI参与神经病理性疼痛的机制研究
  • 批准号:
    81801114
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
IgE活化抗原递呈细胞IL-17信号通路在银屑病中的作用及机制
  • 批准号:
    81773322
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Analysis of CNS inflammatory circuit by combination of glial cell regulation and PET / MRI imaging
胶质细胞调节与PET/MRI成像相结合分析中枢神经系统炎症回路
  • 批准号:
    19H03377
  • 财政年份:
    2019
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Project 2: Natural Killer Cell Response to Cytomegalovirus Infection in Renal Transplantation
项目2:肾移植中自然杀伤细胞对巨细胞病毒感染的反应
  • 批准号:
    10000882
  • 财政年份:
    2017
  • 资助金额:
    $ 17.49万
  • 项目类别:
Project 2: Natural Killer Cell Response to Cytomegalovirus Infection in Renal Transplantation
项目2:肾移植中自然杀伤细胞对巨细胞病毒感染的反应
  • 批准号:
    10225364
  • 财政年份:
    2017
  • 资助金额:
    $ 17.49万
  • 项目类别:
Development of alpha-particle therapy for pancreas cancer with stem cell-targeting 211At-labeled antibody
使用干细胞靶向 211At 标记抗体开发用于胰腺癌的 α 粒子疗法
  • 批准号:
    16H05393
  • 财政年份:
    2016
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Single Molecule Imaging to Quantify FC??RI Signaling Dynamics
单分子成像量化 FC??RI 信号动态
  • 批准号:
    8463220
  • 财政年份:
    2012
  • 资助金额:
    $ 17.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了