Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
基本信息
- 批准号:RGPIN-2019-05940
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nonlinear evolution equations have many applications in descriptions of various models, such as reaction-diffusion, activator-inhibitor, fluid and quantum mechanics and population biology. Many equations involve degenerate or singular terms and some kinds of blow-up properties which cause many challenging problems in global, blow-up and numerical computations. The objectives of this research program are to investigate the properties of global and blow-up solutions for nonlinear evolution equations both theoretically and numerically, including convergence to steady states. The expected results will include: 1. Introduce a new functional method to discuss the global and blow-up solutions for the compressible Euler equations with variable damping coefficient. Also study the asymptotic behaviors, blow-up rate and blow-up time and steady states to the equations. 2. Investigate the existence and blow-up of solutions to higher order nonlinear Schrodinger equations. 3. Modify the existing algorithms for moving mesh methods and other adaptive grid methods to numerically solve compressible Euler equations, higher order nonlinear Schrodinger equations and some complicated equations, such as the equations whose solutions blow up at space infinity. Also develop a moving mesh scheme to simulate asymptotic behaviours in an unbounded domain. 4. Deal with a class of more general quasi-linear parabolic and hyperbolic systems to find sufficient conditions on initial data to deduce global existence and blow-up properties both theoretically and numerically. The new functional method is a very powerful method to obtain a priori estimate for elliptic and parabolic equations and will be introduced to hyperbolic equations. In the functional method, we consider an integral of nth power of several solutions. Taking derivatives with respect to t and integrating by parts we obtain a differential inequality. To my knowledge, if super- and sub-solution methods can be applied to a system, then the functional method can also be applied to the system. However, the functional method only requires weaker conditions. To obtain a numerical solution in an unbounded domain, we first map the unbounded domain into a bounded domain and change equations with some kind of singularity. Then use moving mesh method to reduce errors near the singularity. The numerical solutions also serve as a guide showing when the solutions blow up, exist globally or approach a steady state.**
非线性演化方程在描述各种模型方面有许多应用,例如反应扩散、激活剂-抑制剂、流体和量子力学以及群体生物学。许多方程涉及简并项或奇异项以及某些类型的爆炸特性,这在全局、爆炸和数值计算中引起许多具有挑战性的问题。该研究项目的目标是从理论上和数值上研究非线性演化方程的全局解和爆炸解的性质,包括收敛到稳态。预期结果将包括: 1. 引入一种新的函数方法来讨论可变阻尼系数的可压缩欧拉方程的全局解和爆炸解。还研究方程的渐近行为、爆炸速率和爆炸时间以及稳态。 2. 研究高阶非线性薛定谔方程解的存在性和爆炸性。 3. 修改现有的移动网格方法和其他自适应网格方法的算法,以数值求解可压缩欧拉方程、高阶非线性薛定谔方程和一些复杂方程,例如解在无限远空间爆炸的方程。还开发移动网格方案来模拟无界域中的渐近行为。 4. 处理一类更一般的准线性抛物线和双曲系统,以找到初始数据的充分条件,从而从理论上和数值上推论全局存在和爆炸特性。新的泛函方法是获得椭圆和抛物方程先验估计的非常强大的方法,并将被引入到双曲方程中。在泛函方法中,我们考虑多个解的 n 次方积分。对 t 求导并按部分积分,我们得到微分不等式。据我所知,如果超解法和子解法可以应用于系统,那么泛函方法也可以应用于系统。然而,泛函方法只需要较弱的条件。为了获得无界域中的数值解,我们首先将无界域映射到有界域,并用某种奇点改变方程。然后使用移动网格方法来减少奇点附近的误差。数值解还可以作为指导,显示解何时爆炸、全局存在或接近稳定状态。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, Shaohua其他文献
Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra
金属超分子截断立方八面体表面纳米线的分层自组装
- DOI:
10.1021/jacs.1c00625 - 发表时间:
2021-04 - 期刊:
- 影响因子:15
- 作者:
Wang, Heng;Wang, Kun;Xu, Yaping;Wang, Wu;Chen, Shaohua;Hart, Matthew;Wojtas, Lukasz;Zhou, Li;Gan, Lin;Yan, Xuzhou;et al - 通讯作者:
et al
Oriented collagen fibers direct tumor cell intravasation.
定向胶原纤维直接肿瘤细胞内渗。
- DOI:
- 发表时间:
2016-10-04 - 期刊:
- 影响因子:11.1
- 作者:
Han, Weijing;Chen, Shaohua;Yuan, Wei;Fan, Qihui;Tian, Jianxiang;Wang, Xiaochen;Chen, Longqing;Zhang, Xixiang;Wei, Weili;Liu, Ruchuan;Qu, Junle;Jiao, Yang;Austin, Robert H;Liu, Liyu - 通讯作者:
Liu, Liyu
Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage.
脑膜淋巴管清除蛛网膜下腔出血引起的红细胞。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:16.6
- 作者:
Chen, Jinman;Wang, Linmei;Xu, Hao;Xing, Lianping;Zhuang, Zixin;Zheng, Yangkang;Li, Xuefei;Wang, Chinyun;Chen, Shaohua;Guo, Zibin;Liang, Qianqian;Wang, Yongjun - 通讯作者:
Wang, Yongjun
Identification of key genes associated with cancer stem cell characteristics in Wilms' tumor based on bioinformatics analysis.
- DOI:
10.21037/atm-22-4477 - 发表时间:
2022-11 - 期刊:
- 影响因子:0
- 作者:
Su, Cheng;Zheng, Jie;Chen, Siyu;Tuo, Jinwei;Su, Jinxia;Ou, Xiuyi;Chen, Shaohua;Wang, Congjun - 通讯作者:
Wang, Congjun
Printed sustainable elastomeric conductor for soft electronics
用于软电子产品的印刷可持续弹性体导体
- DOI:
10.1038/s41467-023-42838-7 - 发表时间:
2023-11-06 - 期刊:
- 影响因子:16.6
- 作者:
Lv, Jian;Thangavel, Gurunathan;Xin, Yangyang;Gao, Dace;Poh, Wei Church;Chen, Shaohua;Lee, Pooi See - 通讯作者:
Lee, Pooi See
Chen, Shaohua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, Shaohua', 18)}}的其他基金
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
- 批准号:
555178-2020 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
- 批准号:
555178-2020 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2014-03857 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2014-03857 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
- 批准号:52378179
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氧化物弥散强化金属基涂层的爆炸压焊机理研究
- 批准号:12302436
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水中爆炸载荷作用下复合材料夹芯结构变形及失效机理研究
- 批准号:12302470
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采空区瓦斯爆炸火焰在垮落岩体间的加速与衰减特性研究
- 批准号:52304267
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大容量磷酸铁锂电池热失控全过程产气主控机制及爆炸机理
- 批准号:52304263
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
571735-2022 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
571735-2022 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
University Undergraduate Student Research Awards
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
561540-2021 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
University Undergraduate Student Research Awards