Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations

非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算

基本信息

  • 批准号:
    RGPIN-2014-03857
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The quasi-linear parabolic systems have many applications in Physics, Chemistry, Biology and image processing. Those systems involve degenerate or singular diffusion terms and some kinds of blowup properties which cause many challenging problems for global, blowup and numerical solutions. The objectives of this research program are using a new functional method and moving mesh methods to investigate properties of global and blowup solutions both theoretically and numerically, including elliptic systems related to steady states of parabolic systems. The expected results will include:**1. Introduce a new functional method to discuss global and blowup solutions for systems of porous medium model in physics, Chemotaxis model in chemistry and mutualistic model in ecology. Also study the existence, uniqueness and stability of positive steady states to the systems.**2. Investigate the existence of multi positive solutions of some elliptic systems and bifurcation curves. **3. Modify the existing algorithms of moving mesh methods and other adaptive grid methods to numerically solve some complicated equations or systems, such as equations whose solutions blow up at space infinity. Also develop a moving mesh scheme for Schrodinger equations with conservative mass and energy and other equations whose domains are unbounded. **4. Deal with a class of more general quasi-linear parabolic systems to find sufficient conditions on the initial conditions for the global existence and blowup properties both theoretically and numerically, as well as convergence to steady states.
拟线性抛物线系统在物理、化学、生物学和图像处理方面有许多应用。这些系统涉及简并或奇异扩散项以及某些类型的爆炸特性,这给全局、爆炸和数值解决方案带来了许多具有挑战性的问题。该研究项目的目标是使用新的泛函方法和移动网格方法从理论上和数值上研究全局解和爆炸解的性质,包括与抛物线系统稳态相关的椭圆系统。预期结果将包括:**1。引入一种新的函数方法来讨论物理中多孔介质模型、化学中趋化模型和生态学中互惠模型系统的全局解和爆炸解。并研究系统正稳态的存在性、唯一性和稳定性。**2.研究一些椭圆系统和分岔曲线的多个正解的存在性。 **3.修改现有的移动网格方法和其他自适应网格方法的算法,以数值求解一些复杂的方程或系统,例如解在无限空间爆炸的方程。还为具有保守质量和能量的薛定谔方程以及域无界的其他方程开发移动网格方案。 **4.处理一类更一般的拟线性抛物线系统,以在理论和数值上找到全局存在和爆炸特性的初始条件的充分条件,以及收敛到稳态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen, Shaohua其他文献

Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra
金属超分子截断立方八面体表面纳米线的分层自组装
  • DOI:
    10.1021/jacs.1c00625
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Wang, Heng;Wang, Kun;Xu, Yaping;Wang, Wu;Chen, Shaohua;Hart, Matthew;Wojtas, Lukasz;Zhou, Li;Gan, Lin;Yan, Xuzhou;et al
  • 通讯作者:
    et al
Oriented collagen fibers direct tumor cell intravasation.
定向胶原纤维直接肿瘤细胞内渗。
  • DOI:
  • 发表时间:
    2016-10-04
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Han, Weijing;Chen, Shaohua;Yuan, Wei;Fan, Qihui;Tian, Jianxiang;Wang, Xiaochen;Chen, Longqing;Zhang, Xixiang;Wei, Weili;Liu, Ruchuan;Qu, Junle;Jiao, Yang;Austin, Robert H;Liu, Liyu
  • 通讯作者:
    Liu, Liyu
Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage.
脑膜淋巴管清除蛛网膜下腔出血引起的红细胞。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chen, Jinman;Wang, Linmei;Xu, Hao;Xing, Lianping;Zhuang, Zixin;Zheng, Yangkang;Li, Xuefei;Wang, Chinyun;Chen, Shaohua;Guo, Zibin;Liang, Qianqian;Wang, Yongjun
  • 通讯作者:
    Wang, Yongjun
Identification of key genes associated with cancer stem cell characteristics in Wilms' tumor based on bioinformatics analysis.
  • DOI:
    10.21037/atm-22-4477
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su, Cheng;Zheng, Jie;Chen, Siyu;Tuo, Jinwei;Su, Jinxia;Ou, Xiuyi;Chen, Shaohua;Wang, Congjun
  • 通讯作者:
    Wang, Congjun
Printed sustainable elastomeric conductor for soft electronics
用于软电子产品的印刷可持续弹性体导体
  • DOI:
    10.1038/s41467-023-42838-7
  • 发表时间:
    2023-11-06
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lv, Jian;Thangavel, Gurunathan;Xin, Yangyang;Gao, Dace;Poh, Wei Church;Chen, Shaohua;Lee, Pooi See
  • 通讯作者:
    Lee, Pooi See

Chen, Shaohua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen, Shaohua', 18)}}的其他基金

Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
  • 批准号:
    555178-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and Simulation Studies of a Production System for Ventilators to Mitigate Challenges of COVID-19 Pandemic
呼吸机生产系统的优化和模拟研究,以缓解 COVID-19 大流行的挑战
  • 批准号:
    555178-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alliance Grants
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
  • 批准号:
    52378179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氧化物弥散强化金属基涂层的爆炸压焊机理研究
  • 批准号:
    12302436
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水中爆炸载荷作用下复合材料夹芯结构变形及失效机理研究
  • 批准号:
    12302470
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
采空区瓦斯爆炸火焰在垮落岩体间的加速与衰减特性研究
  • 批准号:
    52304267
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大容量磷酸铁锂电池热失控全过程产气主控机制及爆炸机理
  • 批准号:
    52304263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物线系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of positive solutions for nonlinear elliptic and parabolic systems and their numerical computations
非线性椭圆抛物型系统正解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2014-03857
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了