Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
基本信息
- 批准号:RGPIN-2017-05706
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The applicant's area of study is probability theory. His research program will address three quite distinct topics.******The most applied topic is in actuarial finance, namely mathematical questions arising from the optimal design and management of retirement income products. The research program includes two projects in this area. One concerns the behaviour and design of Tontines. These are alternatives to annuities, when mortality rates are uncertain or stochastic. They hedge individuals' idiosyncratic longevity risk (the risk that they will live longer than others), but leave them exposed to systematic longevity risk (the risk that the entire population will live longer than anticipated). Tontines should therefore be cheaper and less risky to provide than annuities, and one is interested in understanding the tradeoff of purchasers' cost versus risk, the optimal way to design such products, and the factors that affect how they benefit individuals. A second project in this area will study how individuals should consume from a retirement nest egg, once they have access to information about their biological age (which may differ from their chronological age). Genetic testing will soon make this kind of information widely available, so it is important to explore its consequence for retirement planning (as well as its consequences for the pricing and risk management of annuities). ******A completely separate topic is the study of random walk in random environment. This fits into the general field of studying random motion through disordered systems (for example, the percolation of water through an aquifer). The classical work in this area assumes ellipticity or uniform ellipticity, ie that the walker can always move in any direction. Recently there has been interest in models where this condition is relaxed, and some (randomly varying) directions are prohibited. This leads to percolation questions, and to barriers or traps that have a different character than in previous work. In dimension 2 one would like to show recurrence for balanced but asymmetric models. In dimension 3, the percolation questions to resolve will involve random surfaces. ******The third major topic (also completely separate) concerns the behaviour and properties of X-harmonic functions of super Brownian motion. Superprocesses are a widely studied class of infinite-dimensional stochastic processes, taking values in the set of probability measures on Euclidean space. One way they arise is via limits of population genetics models. X-harmonic functions allow one to adjust the laws which describe the stochastic process (a martingale change of measure), and to study how new information causes those laws to be revised (conditioning the process). The theory of such functions is fragmentary and poorly understood. For example, there is a recurrence that arises naturally in this context, for which we know very little about either existence or uniqueness.
申请人的研究领域是概率论。他的研究计划将涉及三个截然不同的主题。*****应用最多的主题是精算金融,即退休收入产品的优化设计和管理所产生的数学问题。该研究计划包括该领域的两个项目。其中之一涉及联合养老保险的行为和设计。当死亡率不确定或随机时,这些是年金的替代方案。它们对冲个人的特殊长寿风险(他们比其他人寿命更长的风险),但让他们面临系统性长寿风险(整个人口比预期寿命更长的风险)。因此,联合养老保险应该比年金更便宜、风险更小,人们有兴趣了解购买者成本与风险的权衡、设计此类产品的最佳方式,以及影响它们如何使个人受益的因素。该领域的第二个项目将研究个人在获得有关其生物年龄(可能与实际年龄不同)的信息后应如何消费退休储蓄。基因测试很快就会使此类信息得到广泛应用,因此探索其对退休计划的影响(以及对年金定价和风险管理的影响)非常重要。 ****** 一个完全独立的主题是随机环境中随机游走的研究。这符合研究无序系统随机运动的一般领域(例如,水通过含水层的渗透)。该领域的经典工作假设椭圆性或均匀椭圆性,即步行者总是可以向任何方向移动。最近,人们对放宽此条件并禁止某些(随机变化)方向的模型产生了兴趣。这导致了渗透问题,以及与以前的工作具有不同特征的障碍或陷阱。在维度 2 中,人们希望展示平衡但不对称模型的递归。在维度 3 中,要解决的渗透问题将涉及随机表面。 ******第三个主要主题(也是完全独立的)涉及超布朗运动的 X 调和函数的行为和性质。超级过程是一类被广泛研究的无限维随机过程,在欧几里得空间上的概率测度集中取值。它们产生的一种方式是通过群体遗传学模型的限制。 X 调和函数允许人们调整描述随机过程的定律(鞅测度的变化),并研究新信息如何导致这些定律被修改(调节过程)。此类函数的理论是零碎的且知之甚少。例如,在这种情况下自然会出现一种重复现象,而我们对其存在性或唯一性知之甚少。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salisbury, Thomas其他文献
Salisbury, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salisbury, Thomas', 18)}}的其他基金
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Hawkes传染金融保险模型下若干随机控制问题的研究
- 批准号:12371472
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
部分可观测平均场正倒向随机系统的最优控制理论及其金融应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Hawkes跳-扩散模型随机控制问题研究及其在金融中的应用
- 批准号:12171086
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
行为金融中最优资产组合的随机控制与分析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
现代保险金融风险模型中drawdown约束下的随机最优决策与鲁棒控制
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
- 批准号:
RGPIN-2017-05706 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual