Coordination Funds
协调基金
基本信息
- 批准号:517885516
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Today’s technologies are capable of converting solar energy to electricity directly (photovoltaics) or indirectly (wind energy or hydropower) at a large scale and at a cost efficiency which is steadily improving. However, the availability of solar energy varies drastically in space and time. Therefore, energy storage is the primary challenge in our transition to a renewable energy system. Here, new molecular materials may pave the road to a phenomenal variety of new and surprising solutions. In the Research Unit FOR MOST, we propose to explore the potential of such a powerful molecular strategy: The conversion, storage and release of solar energy, all combined in just one single molecule so-called Molecular Solar Thermal (MOST) systems. The working principle is as follows: A switchable molecule absorbs light and is converted from a low-energy state to a metastable high-energy state. To release the stored energy, an external trigger (heat, catalyst, light, electric or magnetic field), is applied and the molecule returns to its low-energy state converting the chemical energy to heat. The concept possesses the big advantage that energy capture, storage and release can be accomplished in a very simple medium consisting of the photochromic molecules only. The key components in MOST systems are tailor-made photoswitches, which must be designed to fulfill specific criteria in the best possible way: • High energy storage density with a long half-life of the metastable high-energy state • Efficient photoconversion (high quantum efficiency, good match to the solar spectrum) • High reversibility and good stability (i.e. high selectivity of the conversion and back conversion reaction with minimal degradation) The design of MOST systems poses great challenges to synthetic chemistry. Hence, it is clear that a multidisciplinary approach is indispensable which combines the expertise (i) to develop new MOST switches (synthesis), (ii) to explore their functionality (spectroscopy), (iii) to model their properties (theory) and (iv) to test them in demonstrating devices. In the proposed Research Unit FOR MOST, we will bring together the required expertise to form a spear-heading research team in Germany, which along with leading international researchers, will push the emerging field of MOST to the next level. However, the knowledge obtained goes far beyond the MOST concept and will make valuable contributions in the general field of organic photochemistry.
当今的技术能够大规模地将太阳能直接(光伏发电)或间接(风能或水力发电)转换为电力,并且成本效率正在提高,但是,太阳能的可用性在空间和时间上存在巨大差异。因此,能量存储是我们向可再生能源系统过渡的主要挑战,在这里,新的分子材料可能为各种令人惊讶的新解决方案铺平道路,我们建议探索其潜力。如此强大的分子策略:太阳能的转换、储存和释放,全部结合在一个单分子中,即所谓的分子太阳热能 (MOST) 系统,其工作原理如下:可切换的分子吸收光并从低能态转换为高能态。为了释放储存的能量,施加外部触发(热、催化剂、光、电场或磁场),分子返回到其低能状态,将化学能转化为热能。最大的优势是能量捕获、存储和释放可以在仅由光致变色分子组成的非常简单的介质中完成。MOST 系统中的关键组件是定制的光电开关,其设计必须以最佳方式满足特定标准: • 高能量。存储密度高,亚稳态高能态半衰期长 • 高效光转换(高量子效率,与太阳光谱良好匹配) • 高可逆性和良好稳定性(即转换和反向转换反应的选择性高,降解最小) MOST 系统的设计对合成化学提出了巨大的挑战,因此,显然,多学科方法是必不可少的,它结合了专业知识(i)开发新的 MOST 开关(合成),(ii)探索其功能(光谱学), (iii) 对它们的特性(理论)进行建模,以及 (iv) 在演示设备中对其进行测试。在拟议的 MOST 研究单位中,我们将汇集所需的专业知识,在德国组建一支领先的研究团队。国际领先研究人员将把 MOST 的新兴领域推向新的水平。然而,所获得的知识远远超出了 MOST 的概念,并将在有机光化学的一般领域做出有价值的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hermann A. Wegner其他文献
Professor Dr. Hermann A. Wegner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hermann A. Wegner', 18)}}的其他基金
Investigation of London Dispersion Interactions with Azobenzene Switches
伦敦色散与偶氮苯开关相互作用的研究
- 批准号:
397692616 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Oligoazobenzophanes for molecular thermal energy storage (MOST)
用于分子热能储存的低聚偶氮苯甲烷 (MOST)
- 批准号:
315647310 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Enantioselective Bidentate Lewis Acid Catalyzed Domino Diels-Alder Reactions
对映选择性二齿路易斯酸催化的多米诺狄尔斯-阿尔德反应
- 批准号:
322173476 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
A-Azo: Tuning storage in MOST systems using intra- and intermol- ecular interactions with Azobenzenes
A-偶氮:利用偶氮苯的分子内和分子间相互作用调节 MOST 系统中的存储
- 批准号:
517989571 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
资金约束下贸易信贷融资的多渠道供应链运作决策与协调研究
- 批准号:71902055
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于交叉销售的竞争供应链融资决策与协调机制研究
- 批准号:71702067
- 批准年份:2017
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
资金约束零售商促销下供应链的协调研究
- 批准号:71762021
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:地区科学基金项目
基于渠道权力结构的供应链融资均衡与协调机制研究
- 批准号:71672179
- 批准年份:2016
- 资助金额:45.0 万元
- 项目类别:面上项目
资金约束的供应链中交易成本对融资及运营决策的影响研究
- 批准号:71272116
- 批准年份:2012
- 资助金额:51.0 万元
- 项目类别:面上项目