Smart Microgel-Based Membranes for Enhanced Catalysis and Electrochemical Cells - From Understanding Structure to Custom-Designed Devices.
用于增强催化和电化学电池的智能微凝胶膜 - 从了解结构到定制设计的设备。
基本信息
- 批准号:505656154
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalysis, energy storage and conversion are at present of paramount societal relevance. Unfortunately, electrochemical potentials are basically known since one century and cannot be significantly enhanced. Therefore, the possibility to increase storage capacity and current flux is only possible by minimizing cells. This involves the development of smart membranes having thicknesses in the nanoscale. Moreover, such membranes should have smart properties allowing to control ion flux by external stimuli and having intrinsic safety properties e.g. self regulation of ion flux (current) upon overheating. Similar aspects apply to catalysis by nanoparticles (NP), which is highly effective due to NPs great specific surface. Anyhow, activity of NPs is difficult to control and the bare particles are difficult to separate from the product. In both contexts of smart membranes, the German partner has recently developed a way to cross-link microgels into macroscopic free-standing membranes which were found to exhibit resistance controlled by temperature. The microgels are made by copolymerisation of classical acrylamides and of photo- or electron beam-crosslinkable comonomers. However, at present many details of the local structure of these microgels are unknown, in particular how the comonomers (resp. nanoparticles) are spatially distributed, and how their distribution influences mechanical, resistive, or catalytic membrane properties. In a previous joint French-German project the Montpellier and the Bielefeld group have developed the tools which allow the determination of the structure of such copolymer microgels in detail by neutron scattering methods, based on isotopic substitution and computer simulations. The present project aims at exploiting and extending this knowledge to establish structure-property relations for smart microgel membranes. We will apply combinations of scattering, simulations, and imaging methods to specially-designed microgel particles containing different comonomers and catalytically-active nanoparticles in view of the formation of freestanding and crosslinked films. Then a similar analysis will be performed after film formation, and correlated with transport (resp. catalytic) properties. Based on this the partners will construct either first smart electrochemical devices, or proof-of-principle flow-through reactors with controllable catalytic activity.
催化、能量储存和转化目前具有最重要的社会意义。不幸的是,电化学势自一个世纪以来就已基本为人所知,并且无法显着增强。因此,只有通过最小化电池才能增加存储容量和电流通量。这涉及开发具有纳米级厚度的智能膜。此外,此类膜应具有智能特性,允许通过外部刺激控制离子通量并具有本质安全特性,例如过热时离子通量(电流)的自我调节。类似的方面也适用于纳米粒子 (NP) 的催化作用,由于纳米粒子具有巨大的比表面,因此非常有效。总之,纳米颗粒的活性难以控制,裸露颗粒也难以从产品中分离。在这两种智能膜领域,德国合作伙伴最近开发了一种将微凝胶交联成宏观独立式膜的方法,该膜具有受温度控制的电阻。微凝胶是通过经典丙烯酰胺和光或电子束可交联共聚单体的共聚制成的。然而,目前这些微凝胶的局部结构的许多细节尚不清楚,特别是共聚单体(分别是纳米颗粒)如何在空间上分布,以及它们的分布如何影响机械、电阻或催化膜特性。在之前的法德联合项目中,蒙彼利埃和比勒菲尔德小组开发了一些工具,可以根据同位素取代和计算机模拟,通过中子散射方法详细确定此类共聚物微凝胶的结构。本项目旨在利用和扩展这些知识来建立智能微凝胶膜的结构-性能关系。我们将结合散射、模拟和成像方法,对含有不同共聚单体和催化活性纳米颗粒的专门设计的微凝胶颗粒进行应用,以形成独立和交联的薄膜。然后,在成膜后将进行类似的分析,并将其与传输(分别是催化)特性相关联。在此基础上,合作伙伴将建造第一个智能电化学装置,或具有可控催化活性的原理验证流通式反应器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Hellweg其他文献
Professor Dr. Thomas Hellweg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Hellweg', 18)}}的其他基金
Influence of Saponins on Lipid Bilayers
皂苷对脂质双层的影响
- 批准号:
315438106 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Core-shell nanoparticle microgel hybrids as smart carriers for catalysis
核壳纳米颗粒微凝胶混合物作为催化智能载体
- 批准号:
284427238 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Non-NIPAM based core-shell microgels with enhanced corset effect: Understanding and tuning of the volume phase transition
具有增强紧身胸衣效果的非 NIPAM 核壳微凝胶:体积相变的理解和调节
- 批准号:
258774625 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Enzym-katalysierte Reaktionen in Mikroemulsionen in der Volumenphase und an Grenzflächen: Zusammenhang zwischen Tensidfilm-Elastizität, Phasenstruktur und Reaktivität
本体相和界面微乳液中的酶催化反应:表面活性剂膜弹性、相结构和反应性之间的关系
- 批准号:
213524825 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Untersuchungen zur Steuerung der Struktur/Eigenschafts-Beziehung von intelligenten PNIPAM-Copolymer-Mikrogelen und Mikrogel-Nanopartikel-Kompositen
智能PNIPAM共聚物微凝胶及微凝胶-纳米粒子复合材料结构/性能关系的控制研究
- 批准号:
27255512 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Bicontinuous microemulsions in confinement - absorption into porous matrices, phase behavior and transport
限制中的双连续微乳液 - 吸收到多孔基质中、相行为和传输
- 批准号:
455432427 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于慢性创面微环境可视化检测并时序递送药物的光子晶体水凝胶修复材料
- 批准号:32371384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于磁性水凝胶调控在体力-热微环境促进萎缩肌肉再生的机制研究
- 批准号:12302411
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“滚动轴承”原理与关节腔逐级靶向递药的可注射水凝胶微球“合纵连横”抗骨关节炎作用与机制研究
- 批准号:82374303
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于仿生动态水凝胶窥探关节软骨再生力学微环境适配性及其介导再生机制研究
- 批准号:52303180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声微泡和水凝胶时空控制免疫反应的衰老疫苗策略及其防治动脉粥样硬化的研究
- 批准号:82302203
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MicroLub: A novel microgel-based superlubricating formulation for fat replacement applications
MicroLub:一种基于微凝胶的新型超级润滑配方,适用于脂肪替代应用
- 批准号:
EP/X03514X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10530989 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Bioengineering Sustainable Microgel Particles and Multiscale Characterization of Material Properties
生物工程可持续微凝胶颗粒和材料特性的多尺度表征
- 批准号:
2826717 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Translation of an innovative microgel technology for improving swallowing in the elderly
创新微凝胶技术改善老年人吞咽功能的转化
- 批准号:
ES/X006565/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Predicting smart microgel swelling for copolymer microgels
预测共聚物微凝胶的智能微凝胶膨胀
- 批准号:
563037-2021 - 财政年份:2021
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards