Analysts on harmonic maps over geometric singular spaces via Dirichlet forms

通过狄利克雷形式分析几何奇异空间上的调和映射

基本信息

  • 批准号:
    16540201
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

We establish the following result :1) Variational convergence of metric measure spaces:We introduce a natural definition of Lp-convergence of maps. $pge 1$, in the case where the domain is a convergent sequence of measured metric space with respect to the measured Gromov-Hausdorff topology and the target is a Gromov-Hausdorff convergent sequence. With the Lp-convergence, we establish a theory of variational convergences. We prove that the Poincare inequality with some additional condition implies the asymptotic compactness. The asymptotic compactness is equivalent to the Gromov-Hausdorff compactness of the energy-sublevel sets. Supposing that the targets are CAT(0)-spaces, we study convergence of resolvents. As applications, we investigate the approximating energy functional over a measured metric space and convergence of energy functionals with a lower bound of Ricci curvature. This work was done with Prof. T. Shioya.2) Perturbation of symmetric Markov processes and its related stocha … More stic calculus:We present a path-space integral representation of the semigroup associated with the quadratic form obtained by a lower orderperturbation of the L2-infinitesimal generator L of a general symmetric Markov process. Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^o formula for Dirichlet processes is obtained. This work was done with Professors Z.Q. Chen. P.J. Fitzsimmons and T.S. Zhang.3) Kato class measures over symmetric Markov processes :We show that $fin L^p(X ; m)$ implies $|f|dmin S_K^1$ for $p>D$ with $D>0$, where $S_K^1$ is a subfamily of Kato class measures relative to a semigroup kennel $p_t(x, y)$ of a Markov process associated with a (non-symmetric) Dirichlet form on $L^2(X ; m)$. We only assume that $p_t(x, y)$ satisfies the Nash type estimate of small time defending on $D$. No concrete expression of $p_t(X, V)$ is needed for the result. This wonk was done with M. Takahashi.4) Refinements of exceptional sets with respect to (n, p)-capacity oven symmetric Markov processes:We establish a one to one correspondence between a class of smooth measures in the (n, p)-sense and a class of positive continuous additive functionals admitting (n, p)-exceptional sets. This work was done with A. Sato.5) Liouville theorems for harmonic maps to convex spaces over Markov chains:We give a Liouville type theorem for harmonic maps from the space equipped with the harmonicity of functions in terms of conservative Markov chains to convex spaces admitting barycenters. No differentiable structures for the domain and the target are assumed. This work was done with prof. k.Th. Sturm.6) Laplacian comparison theorem on Alexandrov spaces :We consider a directionally restricted version of the Bishop-Gromov relative volume comparison as generalized notion of Ricci curvature bounded below for Alexandrov spaces. We prove a Laplacian comparison theorem for Alexandrov spaces under the condition. As an application we prove a topological splitting theorem. This work was done with Prof. T.Shioya. Less
我们建立以下结果:1)度量空间的变化收敛:我们侵入了地图的LP连接的定义。拓扑和目标是与LP相关的Gromov-Hausdorff序列。 suburevel。我们提出了一个路径空间的积分代表与一般对称Markov过程的L2-IniTimal Generator L相关的半群,用于对称Markov过程的零能量构成。 。 (x; m)$表示$ | f |。 (x; m)$。连续的添加功能(n,p) - sato.5进行。在保守的营销方面的功能,可以使用安德罗夫教授进行,这项工作是在安德罗夫教授中进行的。下面,我们证明了拓扑成绩

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum principles for subnarmonic functions via local semi-Dirichlet forms
通过局部半狄利克雷形式的亚调函数的极大值原理
Conservativeness of diffusion processes with drift
具有漂移的扩散过程的保守性
Kate class functions of Mankov processes unden ultnacontractivity
超收缩性下曼可夫过程的凯特类函数
Kate class measunes of symmetnic Mankev processes unden heat keennel estimates
热通道估计中对称曼凯夫过程的凯特级测量
Variational convengence over metric spaces
度量空间上的变分收敛
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUWAE Kazuhiro其他文献

KUWAE Kazuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUWAE Kazuhiro', 18)}}的其他基金

Probabilistic approach to analysis and geometry on metric measure spaces
度量测度空间上的分析和几何的概率方法
  • 批准号:
    22340036
  • 财政年份:
    2010
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on harmonic maps on metric measure spaces by Dirichlet forms
度量测度空间调和映射的狄利克雷形式分析
  • 批准号:
    19540220
  • 财政年份:
    2007
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces
狄利克雷空间与格罗莫夫-豪斯多夫极限空间上的调和映射分析
  • 批准号:
    13640220
  • 财政年份:
    2001
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

奇性空间上的几何分析
  • 批准号:
    11401106
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
图的调和染色及相关边划分问题研究
  • 批准号:
    11401519
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
子流形几何的整体性质研究
  • 批准号:
    11301399
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
图的Randić指标以及调和指标极值问题的研究
  • 批准号:
    11226289
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
  • 批准号:
    22K03293
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A variational problem on conformality of maps and a variational problem on pullbacks of metrics
映射共形性的变分问题和度量回调的变分问题
  • 批准号:
    18K03280
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The representation formulas for a surface of higher codimension and a submanifold and their application
高余维曲面和子流形的表示公式及其应用
  • 批准号:
    17K05217
  • 财政年份:
    2017
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Defining the relationship between attenuated insulin receptor signaling and fibrosis in diabetic tendinopathy
确定糖尿病肌腱病中胰岛素受体信号减弱与纤维化之间的关系
  • 批准号:
    9108008
  • 财政年份:
    2016
  • 资助金额:
    $ 2.37万
  • 项目类别:
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
  • 批准号:
    15K04851
  • 财政年份:
    2015
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了