Exact WKB analysis for higher order Painleve equations
高阶 Painleve 方程的精确 WKB 分析
基本信息
- 批准号:16540148
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To establish exact WKB analysis for Painleve hierarchies, we studied1. the Stokes geometry of a higher order Painleve equation and its underlying Lax pair,2. construction of formal solutions with free parameters to a higher order Painleve equation,3. the structure of solutions near (simple) turning points,and consequently obtained the following results.Firstly, as for 1., we obtained a complete description of the Stokes geometry for the first Painleve hierarchy (whose Lax pair has the simplest structure). On the other hand, for Noumi-Yamada systems (whose Lax pair is of size greater than two) virtual turning points of the Lax pair are also relevant to the determination of the Stokes geometry of nonlinear equations, as is pointed out by S.Sasaki. The joint work with N.Honda is now clarifying that the roles of virtual turning points and new Stokes curves of the Lax pair can be well understood by introducing graph-theoretical notions such as "tree structure".Secondly, as for 2., we succeeded in constructing instanton-type solutions by extending the method employed in the second order case, i.e., that of using reduction of a Hamiltonian system to its Birkhoff normal form, to higher order equations. Through this method we obtained formal solutions with free parameters for higher order Painleve equations that are expressible in the form of Hamiltonian systems like the first Painleve hierarchy.Finally, as for 3., the structure theorem at a simple turning point of the first kind for 0-parameter solutions of Painleve hierarchies whose Lax pair is of size two was generalized to Noumi-Yamada systems.Generalization of the structure theorem to instanton-type solutions and analysis at turning points of the second kind are important future problems; if they are overcome, connection problems for higher order Painleve equations will be solved explicitly.
为了建立精确的WKB分析,用于帕恩莱夫层次结构,我们研究了1。高阶painleve方程及其基础宽松对的stokes几何形状,2。具有自由参数的正式解决方案的构建,以达到更高阶段的Painleve方程,3。解决方案靠近(简单)转弯点的结构,因此获得了以下结果。首先,我们获得了第一个Painleve层次结构的Stokes几何形状的完整描述(其LAX对具有最简单的结构)。另一方面,对于Noumi-Yamada系统(其宽松对大于两个),LAX对的虚拟转弯点也与S.Sasaki指出的非线性方程的Stokes几何形状的确定也有关。与N. Honda的联合合作现在澄清,可以通过介绍图形理论概念(例如“树结构”)来很好地理解lax对的虚拟转折点和新的Stokes曲线的作用。第二,我们成功地通过在二阶情况下构建了二阶案例,即在section case,即,i.e.e.e.e.e.e.e.e of second case,即,i.e.e.e.e.e.e.e.e ex case,is of the sy.e.e.e.e.e.e of。形式,高阶方程。通过这种方法,我们获得了具有自由参数的正式解决方案,用于高阶次要方程式,这些方程式以哈密顿系统的形式表达,例如第一个painleve层次结构。第二类转折点的激体型解决方案和分析是重要的未来问题;如果克服了它们,则将明确解决高阶Painleve方程的连接问题。
项目成果
期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward the exact WKB analysis for higher-order Painleve equations - The case of Noumi-Yamada systems
高阶 Painleve 方程的精确 WKB 分析 - Noumi-Yamada 系统的案例
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:I.Miyamoto;M.Yanagishita;Y.Takei
- 通讯作者:Y.Takei
WKB analysis of higher order Painleve equations with a large parameter
大参数高阶 Painleve 方程的 WKB 分析
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Hirano;N;Shioji;N;Y. Takei;Y. Takei;Y. Takei;Y. Takei;Y. Takei;Y. Takei and H. Wakako;Y.Takei;Y. Takei;T. Kawai,and Y. Takei
- 通讯作者:T. Kawai,and Y. Takei
On a local reduction of a higher order Painleve equation and its under-lying Lax pair near a simple turning point of the first kind
关于高阶 Painleve 方程及其底层 Lax 对在第一类简单转折点附近的局部约简
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Reinhard;Farwig;Toshiaki;Hishida;Detlef;Mueller;Toshiaki Hishida;Y.Takei
- 通讯作者:Y.Takei
On the complete description of the Stokes geometry for the first Painleve hierarchy
关于第一 Painleve 层次结构的 Stokes 几何的完整描述
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Kawai;T.Koike;Y.Nishikawa;Y.Takei
- 通讯作者:Y.Takei
On a local reduction of a higher order Painleve equation and its underlying Lax pair near a simple turning point of the 1st kind
关于高阶 Painleve 方程及其基础 Lax 对在第一类简单转折点附近的局部约简
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:T.Aiki;E.Minchev;T.Okazaki;吉原 健一;Y.Takei
- 通讯作者:Y.Takei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEI Yoshitsugu其他文献
TAKEI Yoshitsugu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEI Yoshitsugu', 18)}}的其他基金
Asymptotic analysis for hypergeometric systems and Garnier systems
超几何系统和卡尼尔系统的渐近分析
- 批准号:
21340029 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Connection problems for Painleve hierarchies and WKB analysis
Painleve 层次结构和 WKB 分析的连接问题
- 批准号:
18540174 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Systems and WKB Analysis
可积系统和 WKB 分析
- 批准号:
13640167 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
- 批准号:
21K03300 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental Problems in the exact WKB analysis of higher-order equations
高阶方程WKB精确分析的基本问题
- 批准号:
21K13811 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Studies on exact WKB analysis, topological recursion and Painleve equation
精确WKB分析、拓扑递归和Painleve方程的研究
- 批准号:
20K14323 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
- 批准号:
19H01794 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exact WKB analysis, spectral networks and topological recursion
精确的 WKB 分析、谱网络和拓扑递归
- 批准号:
19F19738 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows