The theory of the pseudo-differential operators and its applications to the theory of the Feynman path integral
伪微分算子理论及其在费曼路径积分理论中的应用
基本信息
- 批准号:16540145
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of our project was to study the Feynman path integrals, usually used in physics, which is defined by means of piecewise free motions, i.e. broken line paths. In detail, my research plan was as follows. (1) The theory of the asymptotic expansion. (2) The theory of quantum continuous measurements. (3) The theory of the quantum electrodynamics. Though we had to change a part of my plan from some reasons, we could get the research results below for these three years.(1) We could give the mathematical proof of the formula deriving the correlation functions from the partition function, which is well known in physics. That is, for n dimensional real valued continuous function J the partition function Z(J)f can be defined by means of the Feynman path integral and is differentiable in the Frechet sense, and their derivatives give the correlation functions.(2) We could prove the existence of the phase space Feynman path integral for the product of functionals z_j(q(t_j),p(t_j)) and gave … More its representation by means of operators. From this result we could give the mathematical definition and the mathematical proof for the formulas given in Feynman (1948) and Feynman-Hibbs (1965) heuristically.(3) The problem to give the definition of the Feynman path integral for a particle with spin has been not solved for a long time (cf. p.355 in Feynman-Hibbs, Schulman(1981)). In my research we could give the definition of the Feynman path integral for some particles with spin, prove its existence and prove that the Feynman path integral satisfies the Pauli equation in the case of one particle.(4) We studied the formalization of the quantum electrodynamics by means of the Feynman path integral. We succeeded in it under the assumption cutting off the part of photons with high frequency by means of the constraint condition, which is assumed usually in physics. We also succeeded in formalizing the quantum electrodynamics without the constraint condition by means of the phase space Feynman path integral. In addition, we succeed in giving the creation and annihilation operators of photos by means of differential operators concretely. Less
我们项目的目的是研究物理学中通常使用的费曼路径积分,它是通过分段自由运动(即折线路径)来定义的。具体而言,我的研究计划如下:(1)理论。 (2)量子连续测量理论。(3)量子电动力学理论,虽然由于某些原因不得不改变部分计划,但是这三年我们还是得到了以下的研究成果。( 1)我们可以给出从配分函数导出相关函数的公式的数学证明,这在物理学中是众所周知的,即对于n维实值连续函数J,配分函数Z(J)f可以通过费曼方程来定义。路径积分 和 在 Frechet 意义上可微,它们的导数给出了相关函数。 (2) 我们可以证明泛函乘积的相空间费曼路径积分的存在性z_j(q(t_j),p(t_j)) 并通过运算符给出其表示形式。从这个结果我们可以给出 Feynman (1948) 和 Feynman-Hibbs 中给出的公式的数学定义和数学证明。 1965)启发式地。(3)给出具有自旋的粒子的费曼路径积分的定义的问题长期以来一直没有得到解决(参见第355页) Feynman-Hibbs, Schulman(1981))在我的研究中,我们可以给出一些具有自旋的粒子的费曼路径积分的定义,证明其存在性,并证明费曼路径积分在单个粒子的情况下满足泡利方程。 (4)我们利用费曼路径积分研究了量子电动力学的形式化,我们在假设用约束条件切断了高频部分的情况下取得了成功。我们还成功地用相空间费曼路径积分形式化了无约束条件的量子电动力学,并用微分算子具体地给出了光的产生和湮灭算子。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mathematical theory of the Feynman path integral for the generalized Pauli equations
广义泡利方程费曼路径积分的数学理论
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M. Nishio;N. Suzuki;M. Yamada;Akira Yamada;一ノ瀬弥
- 通讯作者:一ノ瀬弥
Smooth functional derivatives in Feynman path integrals by time slicing approximation
通过时间切片近似平滑费曼路径积分中的函数导数
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Fujiwara;D.;Kumano-go;N.
- 通讯作者:N.
Invariant Measures for SPDEs with Reflection
带反射的 SPDE 的不变测度
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.A.Burton;T.Furumochi;N.Kumano-go;Y.Otobe
- 通讯作者:Y.Otobe
Mathematical theory of the phase space Feynman path integral of the functional
泛函相空间费曼路径积分的数学理论
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Toshiaki;Hishida;W.Ichinose
- 通讯作者:W.Ichinose
L^2 stability and boundedness of the Fourier integral operators applied to the theory of the Feynman path integral
应用于费曼路径积分理论的傅立叶积分算子的 L^2 稳定性和有界性
- DOI:
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Y.Hishikawa;M.Nishio;M.Yamada;Masakazu Shiba;H. Aikawa;小森洋平;Y. Kagei;一ノ瀬弥
- 通讯作者:一ノ瀬弥
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ICHINOSE Wataru其他文献
ICHINOSE Wataru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ICHINOSE Wataru', 18)}}的其他基金
The efficient transformation from cyclic peptide to lead ligand
环肽向先导配体的高效转化
- 批准号:
15K18897 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The theory of osicllatory integral operartors and its application to the Feynman path integral of quntum field theory
振荡积分算子理论及其在量子场论费曼路径积分中的应用
- 批准号:
26400161 - 财政年份:2014
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthesis and Composed Functions of Multidomain Oligomers with Double-helix Structure
双螺旋结构多域低聚物的合成及复合功能
- 批准号:
25860002 - 财政年份:2013
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the theory of the oscillatory integral operators and its applications to the Feyman path integral for the field theory
振荡积分算子理论及其在场论费曼路径积分中的应用
- 批准号:
23540195 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theory of oscillatory integral operator and its application to the Feynman path integral
振荡积分算子理论及其在费曼路径积分中的应用
- 批准号:
19540175 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The application of the theory of the pseudo-diffrential operators to the Feynman path integral
伪微分算子理论在费曼路径积分中的应用
- 批准号:
13640161 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of the pseudo-differential operotous to the Feynmon path
伪微分运算在Feynmon路径中的应用
- 批准号:
10640176 - 财政年份:1998
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
非等活性自缩合乙烯基聚合反应体系的热力学统计特征
- 批准号:21274056
- 批准年份:2012
- 资助金额:28.0 万元
- 项目类别:面上项目
对称陀螺分子高温光谱的理论研究
- 批准号:11264008
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
非厄米型随机矩阵与KP及其相关可积系列
- 批准号:11226196
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
氢化物XH2(X=B,Al)自由基分子光谱辐射特征的研究
- 批准号:11147158
- 批准年份:2011
- 资助金额:5.0 万元
- 项目类别:专项基金项目
AGT猜想与共形块构造
- 批准号:11145007
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Global analysis of GKZ systems and new development of intersection theory
GKZ系统全局分析及交集理论新进展
- 批准号:
22K13930 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Physiological-based Pharmacokinetics Approach to Determine the Extent of Drug Exposure of Antiseizure Medications During Pregnancy and Breastfeeding
基于生理学的药代动力学方法确定妊娠和哺乳期间抗癫痫药物的药物暴露程度
- 批准号:
10461805 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Global atmospheric data assimilation using radial basis functions
使用径向基函数的全球大气数据同化
- 批准号:
21K03662 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on integral representations of GKZ hypergeometric functions
GKZ超几何函数的积分表示研究
- 批准号:
19K14554 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists