The theory of the pseudo-differential operators and its applications to the theory of the Feynman path integral

伪微分算子理论及其在费曼路径积分理论中的应用

基本信息

  • 批准号:
    16540145
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The aim of our project was to study the Feynman path integrals, usually used in physics, which is defined by means of piecewise free motions, i.e. broken line paths. In detail, my research plan was as follows. (1) The theory of the asymptotic expansion. (2) The theory of quantum continuous measurements. (3) The theory of the quantum electrodynamics. Though we had to change a part of my plan from some reasons, we could get the research results below for these three years.(1) We could give the mathematical proof of the formula deriving the correlation functions from the partition function, which is well known in physics. That is, for n dimensional real valued continuous function J the partition function Z(J)f can be defined by means of the Feynman path integral and is differentiable in the Frechet sense, and their derivatives give the correlation functions.(2) We could prove the existence of the phase space Feynman path integral for the product of functionals z_j(q(t_j),p(t_j)) and gave … More its representation by means of operators. From this result we could give the mathematical definition and the mathematical proof for the formulas given in Feynman (1948) and Feynman-Hibbs (1965) heuristically.(3) The problem to give the definition of the Feynman path integral for a particle with spin has been not solved for a long time (cf. p.355 in Feynman-Hibbs, Schulman(1981)). In my research we could give the definition of the Feynman path integral for some particles with spin, prove its existence and prove that the Feynman path integral satisfies the Pauli equation in the case of one particle.(4) We studied the formalization of the quantum electrodynamics by means of the Feynman path integral. We succeeded in it under the assumption cutting off the part of photons with high frequency by means of the constraint condition, which is assumed usually in physics. We also succeeded in formalizing the quantum electrodynamics without the constraint condition by means of the phase space Feynman path integral. In addition, we succeed in giving the creation and annihilation operators of photos by means of differential operators concretely. Less
我们项目的目的是研究通常用于物理学的Feynman路径积分,该积分是通过分段无动作(即破裂的线路路径)定义的。详细说明,我的研究计划如下。 (1)不对称扩展理论。 (2)量子连续测量的理论。 (3)量子电子的理论。尽管我们不得不从计划的某些原因中将一部分计划更改,但在这三年中,我们可以在下面获得研究结果。(1)我们可以给出从分区功能中得出相关函数的公式的数学证明,该功能在物理学中是众所周知的。也就是说,对于n维真实的连续函数,分区函数z(j)f可以通过feynman路径的整数来定义,并且在特定意义上是可以区分的,并且它们的导数赋予了相关函数。(2)我们可以证明,我们可以证明了相位空间feynman path of Functionals z_j JJ(q _j)的阶段空间途径的存在(qjj)(q jj),p _j JJ(t _jj)操作员。从这个结果,我们可以给出数学定义和数学定义和数学证明,用于Feynman(1948)和Feynman-Hibbs(1965)启发性的公式。(3)给出了Feynman Path与Spin的粒子积分的定义的问题很长时间没有解决(请参见Feynman-Hibbs,Schulman(1981)。在我的研究中,我们可以给出一些带有旋转的颗粒的Feynman路径积分的定义,证明其存在并证明Feynman Path的积分在一个粒子的情况下满足了Pauli方程。(4)我们通过Feynman Path Integral的手段研究了量子电子的格式化。我们通过约束条件以高频的方式削减了照片的一部分,我们成功地将其成功地缩小了。我们还成功地通过相位空间Feynman路径积分来制定量子电动力学,而没有约束条件。此外,我们成功地通过差分运算符赋予了照片的创建和歼灭操作员。较少的

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mathematical theory of the Feynman path integral for the generalized Pauli equations
广义泡利方程费曼路径积分的数学理论
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nishio;N. Suzuki;M. Yamada;Akira Yamada;一ノ瀬弥
  • 通讯作者:
    一ノ瀬弥
Smooth functional derivatives in Feynman path integrals by time slicing approximation
通过时间切片近似平滑费曼路径积分中的函数导数
Invariant Measures for SPDEs with Reflection
带反射的 SPDE 的不变测度
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.A.Burton;T.Furumochi;N.Kumano-go;Y.Otobe
  • 通讯作者:
    Y.Otobe
Mathematical theory of the phase space Feynman path integral of the functional
泛函相空间费曼路径积分的数学理论
L^2 stability and boundedness of the Fourier integral operators applied to the theory of the Feynman path integral
应用于费曼路径积分理论的傅立叶积分算子的 L^2 稳定性和有界性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ICHINOSE Wataru其他文献

ICHINOSE Wataru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ICHINOSE Wataru', 18)}}的其他基金

The efficient transformation from cyclic peptide to lead ligand
环肽向先导配体的高效转化
  • 批准号:
    15K18897
  • 财政年份:
    2015
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The theory of osicllatory integral operartors and its application to the Feynman path integral of quntum field theory
振荡积分算子理论及其在量子场论费曼路径积分中的应用
  • 批准号:
    26400161
  • 财政年份:
    2014
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis and Composed Functions of Multidomain Oligomers with Double-helix Structure
双螺旋结构多域低聚物的合成及复合功能
  • 批准号:
    25860002
  • 财政年份:
    2013
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the theory of the oscillatory integral operators and its applications to the Feyman path integral for the field theory
振荡积分算子理论及其在场论费曼路径积分中的应用
  • 批准号:
    23540195
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The theory of oscillatory integral operator and its application to the Feynman path integral
振荡积分算子理论及其在费曼路径积分中的应用
  • 批准号:
    19540175
  • 财政年份:
    2007
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The application of the theory of the pseudo-diffrential operators to the Feynman path integral
伪微分算子理论在费曼路径积分中的应用
  • 批准号:
    13640161
  • 财政年份:
    2001
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of the pseudo-differential operotous to the Feynmon path
伪微分运算在Feynmon路径中的应用
  • 批准号:
    10640176
  • 财政年份:
    1998
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

应用脑微环境探测技术获取脑分区稳态发育过程中脑细胞外间隙的结构及功能改变
  • 批准号:
    62301245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于空间功能分区的预崩解软岩路堤结构设计方法与长期稳定性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于空间功能分区的预崩解软岩路堤结构设计方法与长期稳定性研究
  • 批准号:
    52278439
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
鄂西北山区土地利用功能权衡机理与分区优化研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多功能分区Janus材料及高分子复合体系界面调控
  • 批准号:
    52173076
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Physiological-based Pharmacokinetics Approach to Determine the Extent of Drug Exposure of Antiseizure Medications During Pregnancy and Breastfeeding
基于生理学的药代动力学方法确定妊娠和哺乳期间抗癫痫药物的药物暴露程度
  • 批准号:
    10461805
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
Drug Discovery for Chagas Disease
恰加斯病的药物发现
  • 批准号:
    10398001
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
Drug Discovery for Chagas Disease
恰加斯病的药物发现
  • 批准号:
    9927574
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
Determination of water partition coefficients between upper mantle minerals and melts as a function of pressure, temperature, and CO2 content using a rapid quench cell in multi-anvil experiments
在多砧实验中使用快速淬火室确定上地幔矿物和熔体之间的水分配系数作为压力、温度和 CO2 含量的函数
  • 批准号:
    402695659
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Research Grants
Building-up Differential Homotopy Theory
建立微分同伦理论
  • 批准号:
    18K18713
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了