Fluid-Structure-Acoustic Interaction of Enclosed Radial Fans
封闭式径流风扇的流固声相互作用
基本信息
- 批准号:468338100
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research project comprises the acoustics of a radial fan operated in a spiral housing. Radial fans have a wide range of applications in a wide variety of fluid engineering applications, in which the requirements for sound radiation are becoming increasingly dominant.The goal of the present application is to investigate the multiphysical interrelationships of flow-related sound radiation of radial fans in volute casings using a combined, experimental, simulation-based approach. It is important to treat the excitation paths for the casing structure separately: There are the fluid dynamic pressure fluctuations as well as the flow induced acoustic pressure field within the casing. The numerical simulation methods are verified and validated against experimentally obtained data. Subsequently, developed methods are used to investigate the sound generation in the fan impeller and the resulting sound radiation through the spiral housing. This is done by means of variant studies. The variants are formed by different inflow conditions to the radial impeller, which influence the flow-induced sound generation in the impeller and thus also the casing excitation and sound radiation into the far field.The innovation of the research work results from the fact that for the first time it is possible to develop a simulation method for enclosed rotating systems, which maps the entire chain of fluid-structure-acoustic interaction. In a complementary approach with experimental investigations, a conscious separation of different mechanisms in sound generation and their complex interactions results in knowledge with a high general validity that is not yet available in literature for enclosed radial fans. The findings allow conclusions to be drawn as to which part of the machine (impeller flow, casing structure, etc.) changes the radiated sound with which influencing parameters. In the development process, this results in a specific treatment of the acoustic problem areas. The basic-oriented investigations have a high general validity and form the basis of future design rules for noise-reduced radial fans. The coupled simulation method provides a calculation tool that allows the flow-induced sound generation and its propagation in radial impellers to be analyzed in the frequency and time domain. Future work will focus on the use of optimization algorithms for noise reduction, which consider not only the inflow conditions to the impeller and their interaction with the leading edge of the blade, but also the material parameters and the shape of the casing structure.
该研究项目包括在螺旋外壳中运行的径流式风扇的声学特性。径流式风扇在各种流体工程应用中有着广泛的应用,其中对声辐射的要求越来越占主导地位。本申请的目标是研究径流式风扇与流动相关的声辐射的多物理相互关系使用基于实验和模拟的组合方法在蜗壳中进行研究。单独处理套管结构的激励路径很重要:套管内存在流体动压波动以及流动引起的声压场。数值模拟方法根据实验获得的数据进行了验证和验证。随后,开发的方法用于研究风扇叶轮中的声音产生以及由此产生的通过螺旋外壳的声音辐射。这是通过变异研究来完成的。这些变体是由径向叶轮的不同流入条件形成的,这影响了叶轮中的流致声的产生,从而影响了壳体激励和声辐射到远场。该研究工作的创新性源于以下事实:第一次可以开发一种封闭旋转系统的模拟方法,该方法可以绘制流体-结构-声学相互作用的整个链。在与实验研究的补充方法中,有意识地分离声音产生的不同机制及其复杂的相互作用,产生了具有高度普遍有效性的知识,而这在封闭式径向风扇的文献中尚不存在。这些发现可以得出关于机器的哪个部分(叶轮流量、壳体结构等)改变辐射声音以及影响参数的结论。在开发过程中,这导致了对声学问题区域的特殊处理。面向基础的研究具有较高的普遍有效性,并构成未来降噪径流式风扇设计规则的基础。耦合仿真方法提供了一种计算工具,可以在频域和时域中分析径向叶轮中流致声的产生及其传播。未来的工作将集中于使用优化算法进行降噪,该算法不仅考虑叶轮的流入条件及其与叶片前缘的相互作用,还考虑材料参数和壳体结构的形状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Stefan Becker其他文献
Professor Dr.-Ing. Stefan Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Stefan Becker', 18)}}的其他基金
Experimentelle Untersuchung der Fluid-Struktur-Akustik Wechselwirkung von Einschicht- und Mehrschichtmodellen menschlicher Stimmlippen - Aktives Modell (IPAT)
人类声带单层和多层模型的流体-结构-声学相互作用的实验研究-主动模型(IPAT)
- 批准号:
47100213 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Experimental investigations of suction in a feat-plate boundary layer
特征板边界层吸力的实验研究
- 批准号:
5401109 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Experimentelle Untersuchung der diskreten Absaugung durch Einzellocharrays mit der Laser-Doppler-Anemometrie
使用激光多普勒风速仪对单孔阵列离散吸力进行实验研究
- 批准号:
5192924 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Priority Programmes
Tracing the mechanisms that generate tonal content in voiced speech
追踪在有声语音中生成音调内容的机制
- 批准号:
446965891 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学边界元法的机器学习研究及在结构振动噪声分析中的应用
- 批准号:12372198
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
轨道交通钢桥结构噪声预测及基于声学超材料的控制机理研究
- 批准号:52308459
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学黑洞-压电分流阻尼复合结构多机制协同聚能耗散机理及减振降噪特性研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
扁薄球壳声学超结构的吸声机理和优化设计
- 批准号:12274038
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of sensory hair cell reinnervation following lateral line cranial nerve damage in Danio rerio
斑马鱼侧线脑神经损伤后感觉毛细胞神经支配的机制
- 批准号:
10749736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Implantable Transducer Systems for Auditory Prostheses
用于听觉假体的植入式换能器系统
- 批准号:
10825738 - 财政年份:2023
- 资助金额:
-- - 项目类别:
High-Resolution Bidirectional Optical-Acoustic Mesoscopic Neural Interface for Image-Guided Neuromodulation in Behaving Animals - RF1 Admin Supplement
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口 - RF1 管理补充
- 批准号:
10712937 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The biophysics and potential cell-type selectivity of acoustic neuromodulation
声神经调节的生物物理学和潜在的细胞类型选择性
- 批准号:
10509833 - 财政年份:2022
- 资助金额:
-- - 项目类别: