Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
基本信息
- 批准号:466528284
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For many tasks in chemical and energy engineering, the accurate knowledge of thermodynamic properties (e.g., pressure and temperature with density and speed of sound) and the phase behavior of the involved fluids plays a key role. In science, such properties are required for the basic understanding of chemical-physical behavior and for the development of predictive models. For industry, thermodynamic properties are the basis for the design of safe and sustainable processes and machinery. However, the quality of property calculations using equations of state (EOS) depends largely on the availability and accuracy of experimental data. Measurements of such data are often carried out within the frame of a dense grid of measurement points, which delivers a comprehensive data set. Nevertheless, with the aim to develop an accurate EOS, this approach is time-consuming, while it is unclear whether all data are ultimately substantial to the model development. As a result, the required time and financial expenditure makes the generation of reliable models rather limited. Considering this, it is highly desirable to significantly reduce the model development time by limiting the amount of experimental data to the required extent and to involve functional forms, which enable short computing times for the application in process simulation. Therefore, the major goal of the research project is to tackle the aforementioned issues by realizing a specific interplay between (1) interpretable machine learning (ML) to find the ideal functional form of the EOS, (2) optimal experimental design to find the most appropriate measurement points and (3) the actual experiment. A potential workflow can be imagined as follows: Starting from initial thermodynamic property measurements, ML-based EOS modeling is used to create a first functional form. This form is used to predict the next most informative measurements, which can then be used as input for further EOS modeling. When to terminate this workflow is inherent part of the project's research schedule. One important output of the project is an in-situ software tool for thermodynamic measurement planning and model development, which considers the measurement effort, model accuracy and interpretability.
对于化学和能源工程中的许多任务,对热力学特性的准确知识(例如,具有密度和声音速度的压力和温度)以及相关流体的相行为起着关键作用。在科学中,这种特性是对化学物理行为的基本理解和预测模型的发展所必需的。对于行业而言,热力学特性是设计安全和可持续过程和机械的基础。但是,使用状态方程(EO)的财产计算质量在很大程度上取决于实验数据的可用性和准确性。此类数据的测量通常是在密集的测量点网格框架内进行的,该框架可提供全面的数据集。然而,为了开发准确的EOS,这种方法是耗时的,而目前尚不清楚所有数据最终是否对模型开发都很重要。结果,所需的时间和财务支出使生成可靠的模型相当有限。考虑到这一点,高度希望通过在所需的范围内限制实验数据的数量并涉及功能形式,从而显着减少模型开发时间,这使得在过程模拟中为应用程序提供了简短的计算时间。因此,研究项目的主要目标是通过实现(1)可解释的机器学习(ML)之间的特定相互作用来解决上述问题,以找到EOS的理想功能形式,(2)最佳实验设计,以找到最合适的测量点和(3)实际实验。可以想象的潜在工作流量如下:从初始热力学性质测量开始,基于ML的EOS建模用于创建第一功能形式。该表格用于预测下一个最有用的测量结果,然后可以用作进一步的EOS建模的输入。何时终止此工作流程是项目研究时间表的固有部分。该项目的一个重要输出是用于热力学测量计划和模型开发的原位软件工具,该工具考虑了测量工作,模型的准确性和解释性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Roland Herzog其他文献
Professor Dr. Roland Herzog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金
A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
- 批准号:
314150341 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
- 批准号:
314066412 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models
马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解
- 批准号:
265374484 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
- 批准号:
215680620 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity
涉及弹塑性变分不等式的最优控制问题的分析和数值技术
- 批准号:
133426576 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Multilevel Architectures and Algorithms in Deep Learning
深度学习中的多级架构和算法
- 批准号:
464103607 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
- 批准号:
511588106 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
文本—行人图像跨模态匹配的鲁棒性特征学习及语义对齐研究
- 批准号:62362045
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
- 批准号:42375143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向机器人复杂操作的接触形面和抓取策略共适应学习
- 批准号:52305030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社交媒体中的上市公司谣言识别、后果及治理研究:多模态深度学习视角
- 批准号:72302018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Measuring and Learning from Care Variation in Sepsis
脓毒症护理变化的测量和学习
- 批准号:
10712986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
- 批准号:
10752459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
- 批准号:
10559270 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant