Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
基本信息
- 批准号:466528284
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For many tasks in chemical and energy engineering, the accurate knowledge of thermodynamic properties (e.g., pressure and temperature with density and speed of sound) and the phase behavior of the involved fluids plays a key role. In science, such properties are required for the basic understanding of chemical-physical behavior and for the development of predictive models. For industry, thermodynamic properties are the basis for the design of safe and sustainable processes and machinery. However, the quality of property calculations using equations of state (EOS) depends largely on the availability and accuracy of experimental data. Measurements of such data are often carried out within the frame of a dense grid of measurement points, which delivers a comprehensive data set. Nevertheless, with the aim to develop an accurate EOS, this approach is time-consuming, while it is unclear whether all data are ultimately substantial to the model development. As a result, the required time and financial expenditure makes the generation of reliable models rather limited. Considering this, it is highly desirable to significantly reduce the model development time by limiting the amount of experimental data to the required extent and to involve functional forms, which enable short computing times for the application in process simulation. Therefore, the major goal of the research project is to tackle the aforementioned issues by realizing a specific interplay between (1) interpretable machine learning (ML) to find the ideal functional form of the EOS, (2) optimal experimental design to find the most appropriate measurement points and (3) the actual experiment. A potential workflow can be imagined as follows: Starting from initial thermodynamic property measurements, ML-based EOS modeling is used to create a first functional form. This form is used to predict the next most informative measurements, which can then be used as input for further EOS modeling. When to terminate this workflow is inherent part of the project's research schedule. One important output of the project is an in-situ software tool for thermodynamic measurement planning and model development, which considers the measurement effort, model accuracy and interpretability.
对于化学和能源工程中的许多任务,准确了解热力学性质(例如压力和温度、密度和声速)以及所涉及流体的相行为起着关键作用。在科学中,这些特性对于化学物理行为的基本理解和预测模型的开发是必需的。对于工业而言,热力学特性是设计安全且可持续的工艺和机械的基础。然而,使用状态方程 (EOS) 进行性能计算的质量在很大程度上取决于实验数据的可用性和准确性。此类数据的测量通常在密集的测量点网格框架内进行,从而提供全面的数据集。然而,以开发准确的 EOS 为目标,这种方法非常耗时,而且尚不清楚所有数据最终是否对模型开发具有实质性意义。因此,所需的时间和财务支出使得可靠模型的生成相当有限。考虑到这一点,非常希望通过将实验数据量限制在所需的范围内并涉及函数形式来显着减少模型开发时间,从而缩短过程模拟应用程序的计算时间。因此,该研究项目的主要目标是通过实现以下之间的特定相互作用来解决上述问题:(1)可解释机器学习(ML)以找到 EOS 的理想函数形式,(2)最佳实验设计以找到最适当的测量点和(3)实际实验。一个潜在的工作流程可以想象如下:从最初的热力学性质测量开始,基于机器学习的 EOS 建模用于创建第一个函数形式。该形式用于预测下一个信息最丰富的测量结果,然后可以将其用作进一步 EOS 建模的输入。何时终止此工作流程是项目研究计划的固有部分。该项目的一项重要成果是用于热力学测量规划和模型开发的现场软件工具,该工具考虑了测量工作量、模型准确性和可解释性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Roland Herzog其他文献
Professor Dr. Roland Herzog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金
A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
- 批准号:
314150341 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
- 批准号:
314066412 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models
马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解
- 批准号:
265374484 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
- 批准号:
215680620 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity
涉及弹塑性变分不等式的最优控制问题的分析和数值技术
- 批准号:
133426576 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Multilevel Architectures and Algorithms in Deep Learning
深度学习中的多级架构和算法
- 批准号:
464103607 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
- 批准号:
511588106 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
- 批准号:42375193
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于自监督学习的医学图像质量迁移反问题理论
- 批准号:12301546
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
- 批准号:62366028
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于自监督学习的脑电特征表达预训练模型研究
- 批准号:62376098
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Measuring and Learning from Care Variation in Sepsis
脓毒症护理变化的测量和学习
- 批准号:
10712986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Anatomical and functional imaging of the conventional outflow pathway
传统流出通道的解剖和功能成像
- 批准号:
10752459 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Artificial intelligence analysis of atrial remodeling evolution in patients with atrial fibrillation: Towards optimal ablation strategies
心房颤动患者心房重塑演变的人工智能分析:寻求最佳消融策略
- 批准号:
10559270 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant