Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing

改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感

基本信息

  • 批准号:
    2329765
  • 负责人:
  • 金额:
    $ 56.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Magnetized plasmas, a combination of superheated gas and magnetic fields, are pervasive in our universe and are responsible for some of the grandest natural phenomena, such as the aurora. Plasmas are also extensively studied for engineering and industrial applications, such as space propulsion and development of future fusion energy reactors. This project aims to improve our ability to understand and predict the behavior of magnetized plasmas using simplified models that are both fast and easy to use. In particular, this investigation will explore methods that combine machine learning techniques that are revolutionizing many fields, like self-driving cars, with the known physical laws that govern magnetized plasmas - seeking to leverage the best aspects of each individual approach.This project will advance data-driven modeling approaches such as machine learning by utilizing physics-informed constraints for magnetized plasmas in three ways: 1) Several emerging data decomposition methods will be applied to numerical simulations of magnetized plasmas for the first time and assessed for these systems; 2) Data-driven nonlinear models based on these decompositions will be tested for modeling magnetized plasmas with significantly increased speed compared to classical approaches; 3) Methods to optimize the placement of sensors to diagnose magnetized plasmas will be evaluated to improve the value of measurements used to both observe plasmas and as the source of information to build data-driven models. Together these three studies will advance the effectiveness of low-dimensional, nonlinear, and interpretable data-driven methods for achieving new physical insight, improved prediction, and robust control of multi-scale magnetized plasmas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
磁化等离子体(过热气体和磁场的组合)在我们的宇宙中普遍存在,并负责某些最宏伟的自然现象,例如Aurora。 还广泛研究了用于工程和工业应用的血浆,例如太空推进和未来融合能量反应器的开发。 该项目旨在使用既快速又易于使用的简化模型来提高我们理解和预测磁化等离子体的行为的能力。 In particular, this investigation will explore methods that combine machine learning techniques that are revolutionizing many fields, like self-driving cars, with the known physical laws that govern magnetized plasmas - seeking to leverage the best aspects of each individual approach.This project will advance data-driven modeling approaches such as machine learning by utilizing physics-informed constraints for magnetized plasmas in three ways: 1) Several emerging data decomposition methods will be applied首次对磁化等离子体进行数值模拟,并对这些系统进行评估; 2)与经典方法相比,基于这些分解的数据驱动的非线性模型将测试以速度显着提高的磁化等离子体; 3)将评估优化传感器放置以诊断磁化等离子体的方法,以提高用于观察等离子体的测量值和作为构建数据驱动模型的信息来源。 Together these three studies will advance the effectiveness of low-dimensional, nonlinear, and interpretable data-driven methods for achieving new physical insight, improved prediction, and robust control of multi-scale magnetized plasmas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Promoting global stability in data-driven models of quadratic nonlinear dynamics
  • DOI:
    10.1103/physrevfluids.6.094401
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
  • 通讯作者:
    A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
Sparse regression for plasma physics
  • DOI:
    10.1063/5.0139039
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Kaptanoglu,Alan A.;Hansen,Christopher;Brunton,Steven L.
  • 通讯作者:
    Brunton,Steven L.
共 2 条
  • 1
前往

Christopher Hansen其他文献

VARIATION IN SOFA SCORE PERFORMANCE IN DIFFERENT INFECTIOUS STATES
  • DOI:
    10.1016/j.chest.2020.08.641
    10.1016/j.chest.2020.08.641
  • 发表时间:
    2020-10-01
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rahul Pawar;Jenny Shih;Lakshman Balaji;Anne Grossestreuer;Parth Patel;Christopher Hansen;Michael Donnino;Ari Moskowitz
    Rahul Pawar;Jenny Shih;Lakshman Balaji;Anne Grossestreuer;Parth Patel;Christopher Hansen;Michael Donnino;Ari Moskowitz
  • 通讯作者:
    Ari Moskowitz
    Ari Moskowitz
An optical-input Maximum Likelihood Estimation feedback system demonstrated on tokamak horizontal equilibrium control
  • DOI:
    10.1016/j.fusengdes.2023.113565
    10.1016/j.fusengdes.2023.113565
  • 发表时间:
    2023-06-01
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rian Chandra;Jeffrey Levesque;Yumou Wei;Boting Li;Alex Saperstein;Ian Stewart;Christopher Hansen;Michael Mauel;Gerald Navratil
    Rian Chandra;Jeffrey Levesque;Yumou Wei;Boting Li;Alex Saperstein;Ian Stewart;Christopher Hansen;Michael Mauel;Gerald Navratil
  • 通讯作者:
    Gerald Navratil
    Gerald Navratil
When to Text? How the Timing of Text Message Contacts in Mixed-Mode Surveys Impacts Response
什么时候发短信?
Are Family Firms Doing More Innovation Output With Less Innovation Input? A Replication and Extension
家族企业是否能以更少的创新投入获得更多的创新产出?
The Longitudinal Measurement of Sexual Orientation and Gender Identity: A Study of Identity Change in a Nationally Representative Sample of U.S. Adults and Adolescents.
性取向和性别认同的纵向测量:美国成年人和青少年全国代表性样本的身份变化研究。
  • DOI:
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Christopher Hansen;Melissa Heim Viox;Erin M Fordyce;Michelle M. Johns;Sabrina Avripas;Stuart Michaels
    Christopher Hansen;Melissa Heim Viox;Erin M Fordyce;Michelle M. Johns;Sabrina Avripas;Stuart Michaels
  • 通讯作者:
    Stuart Michaels
    Stuart Michaels
共 10 条
  • 1
  • 2
前往

Christopher Hansen的其他基金

Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
  • 批准号:
    2108384
    2108384
  • 财政年份:
    2021
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Student Poster Symposium at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE); San Diego California; November 15-21, 2013
ASME 国际机械工程大会暨博览会 (ASME-IMECE) 学生海报研讨会;
  • 批准号:
    1343049
    1343049
  • 财政年份:
    2013
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Standard Grant
    Standard Grant
Student Poster Symposium at the ASME International Mechanical Engineering Congress and Exposition (ASME-IMECE) 2012; Houston, Texas; 9-15 November 2012
2012 年 ASME 国际机械工程大会暨博览会 (ASME-IMECE) 学生海报研讨会;
  • 批准号:
    1247490
    1247490
  • 财政年份:
    2012
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

病证结合视角下基于可解释性机器学习的溃疡性结肠炎复发预测研究
  • 批准号:
    82374623
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
含能化合物熔点与热分解温度的可解释机器学习模型研究
  • 批准号:
    22305234
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于样本迁移和可解释性机器学习的草本湿地植物群落分类研究
  • 批准号:
    42301429
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合拓扑挖掘与可解释机器学习的配电网馈线模型衍生方法
  • 批准号:
    52307121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于场景认知的可解释性机器阅读理解技术研究
  • 批准号:
    62376144
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Research Grant
    Research Grant
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
  • 批准号:
    2889015
    2889015
  • 财政年份:
    2023
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Studentship
    Studentship
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Macroeconomic structural changes and their characteristics: Applications of interpretable machine learning
宏观经济结构变化及其特征:可解释机器学习的应用
  • 批准号:
    23K01319
    23K01319
  • 财政年份:
    2023
  • 资助金额:
    $ 56.99万
    $ 56.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)