喵ID:oGrB8K免责声明

Promoting global stability in data-driven models of quadratic nonlinear dynamics

基本信息

DOI:
10.1103/physrevfluids.6.094401
发表时间:
2021-05
影响因子:
2.7
通讯作者:
A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
中科院分区:
物理与天体物理3区
文献类型:
--
作者: A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Modeling realistic fluid and plasma flows is computationally intensive, motivating the use of reduced-order models for a variety of scientific and engineering tasks. However, it is challenging to characterize, much less guarantee, the global stability (i.e., long-time boundedness) of these models. The seminal work of Schlegel and Noack (JFM, 2015) provided a theorem outlining necessary and sufficient conditions to ensure global stability in systems with energy-preserving, quadratic nonlinearities, with the goal of evaluating the stability of projection-based models. In this work, we incorporate this theorem into modern data-driven models obtained via machine learning. First, we propose that this theorem should be a standard diagnostic for the stability of projection-based and data-driven models, examining the conditions under which it holds. Second, we illustrate how to modify the objective function in machine learning algorithms to promote globally stable models, with implications for the modeling of fluid and plasma flows. Specifically, we introduce a modified"trapping SINDy"algorithm based on the sparse identification of nonlinear dynamics (SINDy) method. This method enables the identification of models that, by construction, only produce bounded trajectories. The effectiveness and accuracy of this approach are demonstrated on a broad set of examples of varying model complexity and physical origin, including the vortex shedding in the wake of a circular cylinder.
对真实的流体和等离子体流动进行建模在计算上是密集型的,这促使在各种科学和工程任务中使用降阶模型。然而,对这些模型的全局稳定性(即长时间有界性)进行表征都具有挑战性,更不用说保证了。施莱格尔和诺阿克(《流体力学杂志》,2015年)的开创性工作提供了一个定理,概述了在具有能量守恒的二次非线性系统中确保全局稳定性的充分必要条件,目的是评估基于投影的模型的稳定性。在这项工作中,我们将该定理纳入通过机器学习获得的现代数据驱动模型中。首先,我们提出该定理应该成为基于投影和数据驱动模型稳定性的标准诊断方法,检查其成立的条件。其次,我们说明如何修改机器学习算法中的目标函数以促进全局稳定的模型,这对流体和等离子体流动的建模具有重要意义。具体来说,我们引入了一种基于非线性动力学稀疏识别(SINDy)方法的改进的“捕获SINDy”算法。这种方法能够识别出从构造上就只产生有界轨迹的模型。这种方法的有效性和准确性在一系列不同模型复杂度和物理起源的例子中得到了证明,包括圆柱尾流中的涡旋脱落。
参考文献(148)
被引文献(52)

数据更新时间:{{ references.updateTime }}

A. Kaptanoglu;Jared L. Callaham;A. Aravkin;C. Hansen;S. Brunton
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓