Multilevel Architectures and Algorithms in Deep Learning

深度学习中的多级架构和算法

基本信息

项目摘要

The design of deep neural networks (DNNs) and their training is a central issue in machine learning. Progress in these areas is one of the driving forces for the success of these technologies. Nevertheless, tedious experimentation and human interaction is often still needed during the learning process to find an appropriate network structure and corresponding hyperparameters to obtain the desired behavior of a DNN. The strategic goal of the proposed project is to provide algorithmic means to improve this situation. Our methodical approach relies on well established mathematical techniques: identify fundamental algorithmic quantities and construct a-posteriori estimates for them, identify and consistently exploit an appropriate topological framework for the given problem class, establish a multilevel structure for DNNs to account for the fact that DNNs only realize a discrete approximation of a continuous nonlinear mapping relating input to output data. Combining this idea with novel algorithmic control strategies and preconditioning, we will establish the new class of adaptive multilevel algorithms for deep learning, which not only optimize a fixed DNN, but also adaptively refine and extend the DNN architecture during the optimization loop. This concept is not restricted to a particular network architecture, and we will study feedforward neural networks, ResNets, and PINNs as relevant examples. Our integrated approach will thus be able to replace many of the current manual tuning techniques by algorithmic strategies, based on a-posteriori estimates. Moreover, our algorithm will reduce the computational effort for training and also the size of the resulting DNN, compared to a manually designed counterpart, making the use of deep learning more efficient in many aspects. Finally, in the long run our algorithmic approach has the potential to enhance the reliability and interpretability of the resulting trained DNN.
深度神经网络(DNN)的设计及其训练是机器学习的核心问题。这些领域的进步是这些技术成功的驱动力之一。然而,在学习过程中通常仍然需要繁琐的实验和人机交互来找到合适的网络结构和相应的超参数,以获得 DNN 的期望行为。该项目的战略目标是提供算法手段来改善这种情况。我们的系统方法依赖于完善的数学技术:识别基本算法量并为其构建后验估计,识别并持续利用给定问题类的适当拓扑框架,建立 DNN 的多级结构以解释 DNN 的事实仅实现输入到输出数据的连续非线性映射的离散近似。将此思想与新颖的算法控制策略和预处理相结合,我们将建立新型的深度学习自适应多级算法,它不仅优化固定的 DNN,而且在优化循环期间自适应地细化和扩展 DNN 架构。这个概念并不局限于特定的网络架构,我们将研究前馈神经网络、ResNets 和 PINNs 作为相关示例。因此,我们的集成方法将能够通过基于后验估计的算法策略取代许多当前的手动调整技术。此外,与手动设计的算法相比,我们的算法将减少训练的计算量以及生成的 DNN 的大小,从而使深度学习在许多方面的使用更加高效。最后,从长远来看,我们的算法方法有可能提高训练后的 DNN 的可靠性和可解释性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Roland Herzog其他文献

Professor Dr. Roland Herzog的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Roland Herzog', 18)}}的其他基金

A Calculus for Non-Smooth Shape Optimization with Applications to Geometric Inverse Problems
非光滑形状优化微积分及其在几何反问题中的应用
  • 批准号:
    314150341
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Optimal Control of Dissipative Solids: Viscosity Limits and Non-Smooth Algorithms
耗散固体的最优控制:粘度限制和非光滑算法
  • 批准号:
    314066412
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Impulse Control Problems and Adaptive Numerical Solution of Quasi-Variational Inequalities in Markovian Factor Models
马尔可夫因子模型中拟变分不等式的脉冲控制问题和自适应数值解
  • 批准号:
    265374484
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Preconditioned SQP solvers for nonlinear optimization problems with partial differential equations
用于偏微分方程非线性优化问题的预处理 SQP 求解器
  • 批准号:
    215680620
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis and Numerical Techniques for Optimal Control Problems Involving Variational Inequalities Arising in Elastoplasticity
涉及弹塑性变分不等式的最优控制问题的分析和数值技术
  • 批准号:
    133426576
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Machine Learning and Optimal Experimental Design for Thermodynamic Property Modeling
热力学性质建模的机器学习和优化实验设计
  • 批准号:
    466528284
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Phase field methods, parameter identification and process optimisation
相场方法、参数识别和工艺优化
  • 批准号:
    511588106
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

面向新型体系结构的低通信复杂度分布式算法研究
  • 批准号:
    61972447
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于可重构计算的高可靠星载计算系统关键问题研究
  • 批准号:
    61802122
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
数据驱动型无服务器计算模式的关键问题研究
  • 批准号:
    61802024
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
异构众核平台CFD高效预条件JFNK并行求解算法及应用
  • 批准号:
    61772542
  • 批准年份:
    2017
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
不确定环境下作战体系结构适应性优化研究
  • 批准号:
    71771216
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
  • 批准号:
    2330054
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2024 ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
旅行:2024 年 ACM 算法和架构并行性研讨会 (SPAA) 的 NSF 学生旅行补助金
  • 批准号:
    2418454
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Acoustic Ambient Computing: Algorithms, Architectures, and Prototypes
职业:声学环境计算:算法、架构和原型
  • 批准号:
    2238433
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Acceleration of kernel with random access and data recurrence on many computer architectures
在许多计算机体系结构上通过随机访问和数据重现来加速内核
  • 批准号:
    22K12057
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了