Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations

非线性扩散方程组及相关椭圆微分方程组的研究

基本信息

  • 批准号:
    15540216
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

In this project, we have studied the structure of solutions for the following two types of equations : (a) reaction diffusion systems with nonlinear diffusion in mathematical biology and (b) semilinear diffusion equations describing phase transition phenomenaThe first problem in mathematical biology is given by a system of differential equations with quasilinear diffusion of the formu_t=Δ[φ(u,v)u]+au(1-u-v), v_t=Δ[ψ(u,v)v]+bv(1+du-v),under homogeneous Dirichlet boundary conditions. Here u and v denote population densities of prey and predator species, respectively. It is well known that the corresponding stationary problem has a positive steady-state under a suitable condition. Our main interest is to derive useful information on profile and stability of each positive steady-state. In case φ(u,v)=1 and 4,φ(u,v=1+β u, we have shown that the stationary problem has at least three positive solutions if β is sufficiently large and some other conditions are imposed. Moreover, stability or in … More stability of each positive solution is also investigated.The second problem is given by u_t=ε^2u_<xx>+u(1-u)(u-a(x)) with homogeneous Neumann boundary condition, where 0<a(x)<1. When ε is sufficiently small, it is known that this problem admits various kinds of steady-state solutions. In particular, we are interested in steady state with transition layers and spikes. Here transition layer for a solution means a part of u(x) where u(x) drastically changes from 0 to 1 or 1 to 0 in a very short interval. Such oscillating solutions have been studied by Ai-Chen-Hastings and our group, independently. It has been proved that any transition layer appears only in a neighborhood of x such that a(x)=1/2 and that any spike appears only in a neighborhood of x such that a(x) takes its local maximum or minimum. We have also established more information on profiles of multi-transition layers and multi-spikes, their location and the relationship between profile and stability of steady-state solution with transition layers. Less
在该项目中,我们研究了以下两种方程式的解决方案的结构:(a)数学生物学非线性差异的反应扩散系统和(b)半线性差异方程式描述了数学生物学中的第一个问题的第一个问题是由具有差异方程的系统差异的系统差异给出的。在同质的dirichlet边界条件下,Formula_T =Δ[φ(U,V)U]+AU(1-U-V),V_T =δ[ψ(U,V)V]+BV(1+DU-V),在均质的Dirichlet边界条件下。在这里,u和v分别表示猎物和捕食者物种的人口密度。众所周知,相应的固定问题在适当的条件下具有正稳态。我们的主要兴趣是获取有关每个正稳态的轮廓和稳定性的有用信息。在φ(u,v)= 1和4的情况下,φ(u,v = 1+βu,我们已经表明,如果β足够大,并且提出了其他一些条件,则固定问题至少具有三个积极的解决方案。此外,稳定性或在…中的稳定性或更高的稳定性也更高的稳定性也被研究了第二个问题。还研究了第二个问题。 Neumann边界条件,其中0 <a(x)<1时,尤其是该问题尤其是稳态的解决方案。 A-Chen-Hastings和我们的小组独立证明,任何过渡层仅在X的邻居中出现,因此A(X)= 1/2,并且任何Spike仅在X附近出现,以使A(X)占据其局部最大值或最小值。我们还建立了更多有关多转移层和多尖峰的配置文件,它们的位置以及稳态解决方案与过渡层之间的稳定性之间的关系。较少的

项目成果

期刊论文数量(122)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coexistence states for a prey-predator model with cross-diffusion
Goro Akagi, Jun Kobayashi, Mitsuharu Otani: "Principle of symmetric criticality and evolution equations"Dynamical Systems and Differential Equations. 1-10 (2003)
Goro Akagi、Jun Kobayashi、Mitsuharu Otani:“对称临界性原理和演化方程”动力系统和微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A positive solution for a nonlinear Schrodinger equation in RAINY^{N}
RAINY^{N} 中非线性薛定谔方程的正解
Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Yoshio其他文献

YAMADA Yoshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Yoshio', 18)}}的其他基金

Study on free boundary problems and reaction-diffusion equations arising in mathematical ecology
数学生态学中的自由边界问题和反应扩散方程研究
  • 批准号:
    16K05244
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on reaction-diffusion equations and related free boundary problems
反应扩散方程及相关自由边界问题研究
  • 批准号:
    24540220
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems
反应扩散系统及相关非线性问题的分析
  • 批准号:
    21540229
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Theory of Digital Analysis
数字分析理论构建
  • 批准号:
    20200044
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Research on the structure of solutions for nonlinear systems of reaction-diffusion equations
反应扩散方程非线性系统解的结构研究
  • 批准号:
    18540223
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SYNTHESIS OF NOVEL NANOCARBONS FROM CARBON PRECURSORS PRERARED BY DEFLUORINATION
由脱氟制备的碳前体合成新型纳米碳
  • 批准号:
    16550166
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Motion Detection Algorithm using Neural Networks
使用神经网络的精确运动检测算法
  • 批准号:
    13650411
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
  • 批准号:
    12640224
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Precision Template Matching Method and Its Application to Motion Detection of Image Sequences
精密模板匹配方法的发展及其在图像序列运动检测中的应用
  • 批准号:
    09650417
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of nonlinear prabolic systems and related elliptic systems
非线性抛物线系统及相关椭圆系统的研究
  • 批准号:
    09640228
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

地球磁层准线性共振波粒相互作用的热等离子体效应研究
  • 批准号:
    41474141
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了