Study of nonlinear prabolic systems and related elliptic systems
非线性抛物线系统及相关椭圆系统的研究
基本信息
- 批准号:09640228
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Analysis of reaction diffusion systems with cross-diffusion terms : We have discussed reaction diffusion systems with cross-diffusion and reaction of Lotka-Volterra type. These systems appear in mathematical biology. Mathematically, it is very important to derive sufficient conditions for the existence of time-global solutions and get information on the structure of positive stationary solutions (biologically, coexistence states). As to the non-stationary problem a global existence result has been obtained in one and two space-dimensions. For the stationary problem with zero Dirichlet boundary condition, we have studied uniqueness and non-uniqueness of positive stationary solutions as well as sufficient conditions for their existence. It is proved that our system admits multiple existence of postive solutions. Moreover, numerical simulations exhibit complicate structure of positive stationary solutions such as bifurcation of symmetric solutions from semitrivial solutions and, additionally, bifurcation of asymmetric solutions from symmetric ones.(2) Analysis of quasilinear parabolic equations with p-Laplacian and logistic terms : Although the nonlinearity and degeneracy of p-Laplacian brings about the difficulty, it also gives remarkable nonlinear phenomenon. We have obtained satisfactory understanding on the structure of stationary solutions in higher space dimension as well as one dimension. In particular, we also have studied profiles of stationary solutions and proved interesting results on flat hats which stem from degenerate diffusion. Furthermore, we could show interesting information on the temporal and spatial change of non-stationary solutions.
(1)分析具有交叉扩散术语的反应扩散系统:我们已经讨论了具有交叉扩散和Lotka-Volterra型反应的反应扩散系统。这些系统出现在数学生物学中。从数学上讲,为存在时间全球解决方案的存在,并获取有关阳性固定溶液(生物学上共存状态)的结构的信息非常重要。至于非平稳问题,在一个和两个空间维度中获得了全局存在结果。对于零dirichlet边界条件的固定问题,我们已经研究了正固定溶液的独特性和非独特性以及它们存在的足够条件。事实证明,我们的系统承认有多重的后代解决方案。此外,数值模拟表现出阳性固定溶液的复杂结构,例如来自半主动溶液的对称溶液的分叉化,并在对称溶液中对不对称溶液进行对称溶液的分叉化。(2)分析与p-laplacian和formistic termenty the Cribistian和degracise the demane the Prinace the Prinacy ancy pranenace the prabician cormenace cormenty of praplacian的分析。显着的非线性现象。我们已经对较高空间维度和一个维度的固定解决方案的结构获得了令人满意的理解。特别是,我们还研究了固定溶液的曲线,并证明了源自退化扩散的扁平帽子的有趣结果。此外,我们可以显示有关非平稳解决方案的时间和空间变化的有趣信息。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
杉山由恵、大谷光春: "C^∽ solutions of generalized porous medium equations"Proceedings of the Conference on Nonlinear Partial Differential Equations. 62-70 (1998)
Yoshie Sugiyama、Mitsuharu Otani:“广义多孔介质方程的 C^∽ 解”非线性偏微分方程会议记录 62-70 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Yoshida & Y.Yamada: "Global attractivity of coexistence states for a certain class of reaction diffusion systems with 3×3 cooperative matrices."Advances in Mathematical Sciences and Applications. Vol.9. 563-598 (1999)
A.Yoshida 和 Y.Yamada:“具有 3×3 协作矩阵的某类反应扩散系统的共存态的全局吸引力”。数学科学与应用进展,第 9 卷(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shingo Takeuchi: "Positive solutions of a degenerate elliptic equation with logistic reaction."Proceeding of the American Mathematical Society. (To appear). (2000)
Shingo Takeuchi:“具有逻辑反应的简并椭圆方程的正解。”美国数学会学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
廣瀬宗光: "Structure of positive radial solutions to the Haraux-Weissler equation, II"Adv. Mathematical Sciences and Applications. Vol.9,No.1. 473-497 (1999)
Munemitsu Hirose:“Haraux-Weissler 方程的正径向解的结构,II”Adv. 数学科学与应用,第 9 卷,第 473-497 期(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
山田 義雄: "Coexistence States for Some Population Models with Cross-Diffusion" Forma. 12,2. 153-166 (1997)
Yoshio Yamada:“一些具有交叉扩散的群体模型的共存状态”Forma 153-166 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 39 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8
YAMADA Yoshio的其他基金
Study on free boundary problems and reaction-diffusion equations arising in mathematical ecology
数学生态学中的自由边界问题和反应扩散方程研究
- 批准号:16K0524416K05244
- 财政年份:2016
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on reaction-diffusion equations and related free boundary problems
反应扩散方程及相关自由边界问题研究
- 批准号:2454022024540220
- 财政年份:2012
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems
反应扩散系统及相关非线性问题的分析
- 批准号:2154022921540229
- 财政年份:2009
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Construction of Theory of Digital Analysis
数字分析理论构建
- 批准号:2020004420200044
- 财政年份:2008
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Research on the structure of solutions for nonlinear systems of reaction-diffusion equations
反应扩散方程非线性系统解的结构研究
- 批准号:1854022318540223
- 财政年份:2006
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
SYNTHESIS OF NOVEL NANOCARBONS FROM CARBON PRECURSORS PRERARED BY DEFLUORINATION
由脱氟制备的碳前体合成新型纳米碳
- 批准号:1655016616550166
- 财政年份:2004
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations
非线性扩散方程组及相关椭圆微分方程组的研究
- 批准号:1554021615540216
- 财政年份:2003
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Precision Motion Detection Algorithm using Neural Networks
使用神经网络的精确运动检测算法
- 批准号:1365041113650411
- 财政年份:2001
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
- 批准号:1264022412640224
- 财政年份:2000
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Development of Precision Template Matching Method and Its Application to Motion Detection of Image Sequences
精密模板匹配方法的发展及其在图像序列运动检测中的应用
- 批准号:0965041709650417
- 财政年份:1997
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似海外基金
確率拡散方程式系
随机扩散方程组
- 批准号:14J0004714J00047
- 财政年份:2014
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
- 批准号:1264022412640224
- 财政年份:2000
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Theoretical Study of the Functional Differential Equations using Computer Simulation
泛函微分方程的计算机模拟理论研究
- 批准号:1164021011640210
- 财政年份:1999
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Theoretical and Numerical Study of the Functional Differential Equations
泛函微分方程的理论与数值研究
- 批准号:0964021109640211
- 财政年份:1997
- 资助金额:$ 2.24万$ 2.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)