Zeta functions of graphs and coverings
图和覆盖层的 Zeta 函数
基本信息
- 批准号:15540147
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We express an L-function of a regular covering of a graph G by using that of G. Moreover, we treat zeta functions and L-functions of a semiregular bipartite graph, its line graph, its middle graph and their regular coverings, and present an analogue of the Selberg trace formula for an L-function of a semiregular bipartite graph.We consider weighted zeta functions and L-functions of digraphs, and give their determinant expressions. Moreover, we present determinant expressions for weighted zeta functions and weighted L-functions of graphs, and express the weighted zeta function of a regular covering of a graph as a product of its weighted L-functions. By using a similar method to the above one, we present determinant expressions for the weighted complexities of a graph and its (regular or irregular) covering. Furthermore, we present a new decomposition formula for the weighted zeta function of a (regular or irregular) covering of a graph, and study the structure of a balanced covering of a unbalanced graph as an application.Finally, we consider the Bartholdi zeta functions and Bartholdi L-functions of a graph, a digraph and their covering, and present their determinant expressions and decomposition formulas. Furthermore, we present decomposition formulas for the Bartholdi zeta function of some branched covering of a graph, and the weighted Bartholdi zeta function of a graph.
我们通过使用G来表达图形g的定期覆盖g的功能。此外,我们处理半毛的两分图的zeta函数和l功能,其界限,中间图和常规覆盖物,并呈现Selberg痕量的类似物,以用于selebartiate themiregular bipartitions的l函数和ZERICTION ZERICTIONS。决定性表达式。此外,我们提出了图形加权Zeta函数和加权L功能的决定符表达式,并表达图形的常规覆盖物的加权Zeta函数,作为其加权L功能的产物。通过使用与上述类似的方法,我们提出了图形及其(规则或不规则)覆盖的加权复杂性的决定符表达式。此外,我们提出了一个新的分解公式,用于图形覆盖的(规则或不规则)的加权Zeta功能,并研究不平衡图的平衡覆盖的结构作为应用程序。在本文上,我们考虑Bartholdi Zeta Zeta Zeta函数和图形的bartholdi lignaldi&Bartholdi l-Bartholdi l-Bartholdi ligntions a Graph的功能,图形和封面和他们的封面和确定性和确定性的确定性和确定性。此外,我们提出了一些图的某些分支覆盖物的Bartholdi Zeta功能的分解公式,以及图形的加权Bartholdi Zeta函数。
项目成果
期刊论文数量(120)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bartholdi zeta functions of digraphs
- DOI:10.1016/j.ejc.2003.07.001
- 发表时间:2003-11
- 期刊:
- 影响因子:0
- 作者:H. Mizuno;I. Sato
- 通讯作者:H. Mizuno;I. Sato
被覆グラフとその拡張の数え上げ
覆盖图的枚举及其扩展
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:H.Mizuno;I.Sato;I.Sato;佐藤 巌;水野 弘文;佐藤 巌;水野 弘文;佐藤厳
- 通讯作者:佐藤厳
Lifts of automorphisms of symmetric digraphs associated with cyclic abelian covers II
与循环阿贝尔覆盖相关的对称有向图自同构的提升 II
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Mizuno;I.Sato;I.Sato
- 通讯作者:I.Sato
Zeta functions of regular coverings
常规覆盖物的 Zeta 函数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H.Mizuno;I.Sato;I.Sato
- 通讯作者:I.Sato
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Iwao其他文献
Autonomy and Mobilization : Two Faces of Japan's Civil Society
自治与动员:日本公民社会的两个面孔
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao - 通讯作者:
SATO Iwao
町田市における団地建設の影響とその後の課題 : 少子高齢時代の団地再生
町田市住宅小区建设的影响及后续课题:少子高龄化时代的住宅小区的活性化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
ADACHI;Motohiro;SATO Iwao;平山洋介;松本 暢子 - 通讯作者:
松本 暢子
SATO Iwao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Iwao', 18)}}的其他基金
A generalization of zeta function of a graph and its application
图zeta函数的推广及其应用
- 批准号:
23540176 - 财政年份:2011
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Local Governance as Multi-organizational Cooperation to Secure the Livelihood of Inhabitants
地方治理多组织合作保障民生
- 批准号:
22330020 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interdisciplinary and historical study on the European judicial statistics
欧洲司法统计的跨学科和历史研究
- 批准号:
19330004 - 财政年份:2007
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
General Study on the Social Transition and the Reestablishment of the Housing System in Japan
日本社会变迁与住房制度重建综述
- 批准号:
16530034 - 财政年份:2004
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Citizen's Access to Legal Advice and Social Stratification in Contemporary Japan
当代日本公民获得法律咨询的机会和社会分层
- 批准号:
15084203 - 财政年份:2003
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Expression of tenascin-Xon rat TMJ in functional property
Tenascin-Xon大鼠TMJ功能特性的表达
- 批准号:
13671918 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Socio-legal study on the function of voluntary association in the process of legal mobilization by citizens
公民自愿结社在公民法律动员过程中作用的社会法学研究
- 批准号:
12620009 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enumeration of Graph Coverings and Their Generalization
图覆盖的枚举及其泛化
- 批准号:
11640145 - 财政年份:1999
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developmental changes and eddect of soft diet on enzyme activites and on morphology of rat masseter and cortex mitochondria
软食对大鼠咬肌和皮质线粒体酶活性及形态的发育变化及影响
- 批准号:
10671722 - 财政年份:1998
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on the High Rate of Litigation in Germany
德国高诉讼率研究
- 批准号:
08620009 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Multiple Zeta Values in Function Fields using Motivic Framework
使用 Motivic 框架的函数域中的多个 Zeta 值
- 批准号:
2302399 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Standard Grant
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Therapeutic Strategy to Treat Alzheimer's Disease by VGF Delivery into Brain
通过将 VGF 输送至大脑来治疗阿尔茨海默病的治疗策略
- 批准号:
10738951 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Developing imaging nanoprobes to advance prognosis of kidney fibrosis
开发成像纳米探针以改善肾纤维化的预后
- 批准号:
10574964 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Analysis of structures of multiple zeta values over function fields
函数场上多个 zeta 值的结构分析
- 批准号:
23K03073 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)