Construction of Neural Network acquiring an Internal Model of Visual Perceptual Grouping

获取视觉感知分组内部模型的神经网络的构建

基本信息

项目摘要

In the human visual system, the visual modalities are detected at visual cells in the retina, the lateral geniculate nucleus(LGN) and the primary visual cortex (V1). Aperture problem is a kind of experiments for analyzing the binding mechanism for motion processing in the early visual system. A circle aperture where a bar is moving in the background is first displayed at the computer display. Two other circles appear next at both sides of the center circle, but two bars are also moving in the background, and the bar's orientation is different from the center's. If subjects perceived three bars as a bar, the center bar's moving orientation would be changed as same as at the both sides of circle's. This perceptual grouping is strongly depending on the display time. On the other hand, visual models and neural networks based on the human visual system have been proposed, e.g., BCS, FCS, ARTMAP, fuzzy ARTMAP and TAM Network. TAM (Topographic Attentive Mapping) Network is a biologically-motivated neural network. TAM Network is analogous to receptive field, LGN, and V1 in the structure from the input layer to the output layer. When the network makes an incorrect error, the attentional mechanism is invoked based on the feedback signals and inhibitory synapses, and the error is adjusted to be smaller. In this research, the following researches are studied.1.Perceptual rates are estimated changing the display time, radius, distance between circles, and the dependency of display time on radius and distance between circles is confirmed.2.The curve of perceptual rates for display time is convex.3.Fuzzy rules are acquired from aperture's data using TAM Network, and the usefulness of feedback signals and inhibitory synapses of TAM Network is shown.By these researches, we show the possibility of the decreasing of perceptual rate in the late display time more than 550ms. The usefulness of the feedback signals and the inhibitory synapses of TAM Network is also shown.
在人类视觉系统中,在视网膜,侧向元素核(LGN)和主要视觉皮层(V1)的视觉细胞上检测到视觉方式。孔径问题是一种用于分析早期视觉系统运动处理的结合机制的实验。在计算机显示器上首先显示在背景中的条形在后台移动的圆圈。另外两个圆圈出现在中心圆的两侧,但是两个条也在背景中移动,并且条的方向与中心的方向不同。如果受试者将三个条视为条形杆,则中央条的移动方向将与Circle两侧的移动方向更改。这种感知分组的强烈取决于显示时间。另一方面,已经提出了基于人类视觉系统的视觉模型和神经网络,例如BCS,FCS,Artmap,Fuzzy Artmap和Tam Network。 TAM(地形专注于映射)网络是一个生物学动机的神经网络。 TAM网络类似于从输入层到输出层的结构中的接收场,LGN和V1。当网络犯错误时,根据反馈信号和抑制性突触将注意注意机制,并将误差调整为较小。在这项研究中,研究了以下研究。1。估计的感知率改变了显示时间,半径,圆之间的距离以及显示时间对半径的依赖性和圆之间的距离。我们显示了在晚期显示时间超过550毫秒内感知率降低的可能性。还显示了反馈信号和TAM网络的抑制突触的有用性。

项目成果

期刊论文数量(108)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
I.Hayashi, J.R.Williamson: "An Analysis of Aperture Problem Using Fuzzy Rules Acquired from TAM Network"Proc. of 2002 World Congress on Computational Intelligence (WCCI2002). 914-919 (2002)
I.Hayashi, J.R.Williamson:“使用从 TAM 网络获得的模糊规则分析孔径问题”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
林 勲: "ガボール関数を用いたTAM Networkの受容野入力構造の提案"ファジィ・コンピューティング研究会第15回ワークショップ. (2003)
Isao Hayashi:“利用Gabor函数提出TAM网络的感受野输入结构”模糊计算研究组第15次研讨会(2003年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A Study of Orientation Selectivity of TAM Network
TAM网络方向选择性研究
Aperture問題における輪郭運動速度に対する知覚認識
Aperture问题中轮廓运动速度的感知识别
Orientation Selectivity by TAM Network Using Gabor Function Type Receptive Field
TAM 网络使用 Gabor 函数类型感受野的方向选择性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAYASHI Isao其他文献

Non-crosslinking aggregation of DNA-functionalized gold nanoparticles
DNA功能化金纳米粒子的非交联聚集
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinoda;M.;HAYASHI Isao;Masahiro Fujita and Mizuo Maeda
  • 通讯作者:
    Masahiro Fujita and Mizuo Maeda

HAYASHI Isao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HAYASHI Isao', 18)}}的其他基金

Catastrophic Natural Disasters: Studies of Environmental and Social Change and Activities to Reduce Future Vulnerabilities
灾难性自然灾害:环境和社会变化研究以及减少未来脆弱性的活动
  • 批准号:
    20251011
  • 财政年份:
    2008
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Formulation and Knowledge Acquisition of Bio-closed-loop System by Cultured Neuronal Network of Rat Hippocampus Connected to Moving Robot
大鼠海马培养神经元网络与移动机器人连接的生物闭环系统的构建和知识获取
  • 批准号:
    18500181
  • 财政年份:
    2006
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ethnographic Studies of Disaster Response and Management in the Asia-Pacific Region
亚太地区灾害应对与管理的民族志研究
  • 批准号:
    16251012
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

A Generalized Network Solution For Electromagnetic Aperture Problems
电磁孔径问题的通用网络解决方案
  • 批准号:
    7604588
  • 财政年份:
    1976
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了