Non-Additive Criterion on Controlled Markov Chains and its Applications to Mathematical Finance
受控马尔可夫链的非可加性准则及其在数学金融中的应用
基本信息
- 批准号:13440036
- 负责人:
- 金额:$ 5.76万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies from a viewpoint of non-additivity, which is well-known as non-linearity in criterion. Our aim is to clarify an optimal structure both in policy and in system dynamics under the expected utility criteria. Further we also apply the results we have obtained for optimization scheme to non-optimization problems such as option evaluation in mathematical finance.It has been well known that dynamic optimizations such as in Markov decision processes have treated additive (linear) criteria e.g. discounted total expected reward. These optimizations are relatively easily performed because of linearity in expectation operator: However what will happen when we optimize such non-additive criteria? Our study begins with abandoning the linearity in expectation. Instead, we focus our attention to (a)monotonicity in expectation operator, (b)associativity in reward criteria and (c)successive applicability of state dynamics.By using these three properties, we have succeeded in establi … More shing a large variety of optimization methods and in recognizing that these dynamic methods turn out to be fruitful in implemnentation/calculation. To be more concretely specific, we have obtained the following four results.(1)To have introduced policy classes and classified them into Markov, general, primitive and expanded Markov,(2)To have introduced two criterion classes and classified both into simple criterion (additive, multiplicative, maximum and terminal) and compound criterion (range, variance, ratio, sum excluding extrema and mid-range),(3)To have associated the policy classes with the two criterion classes and presented how to imbed the original problem into an expanded class of problems,(4)To have applied the results obtained for wide class of optimization problems in (1)-(3) to a class of non-optimization problems in mathematical finance such as option pricing.Throughout this study, we have clarified that a large class of optimization methods have been useful for a wide variety of criteria. These methods have been restricted to a small class of deterministic problems. Now our approach has shown that these methods are applicable to a huge class of optimization and non-optimization problems in stochastic, fuzzy or non-deterministic problems. In particular we have developed an evaluation method of a large class of options (derivatives) in mathematical finance. This is called dynamic pricing or recursive evaluation. Further more we have succeeded in developing some new derivatives such as options with random expiration date…Pacific options, look back American options and others.As a summary we have made dynamic optimization method fiuitful Thus dynamic programming, recursive method, and invariant imbedding turn out to be useful for a wide class of optimization and/or evaluation problems which inherits (i)non-additivity, (ii)non-linearity or (iii)non-determinancy. This project has just opened the door to overcome the three difficulties. Less
该项目从政策和预期的效用标准中的h的观点进行了研究。在Markison过程中,由于期望运算符的线性,可以进行添加的(线性)标准。 (a)投资操作员的单调性,(b)奖励标准中的关联性和(c)状态动力学的连续适用性。通过使用三个这些替代品,建立...更多地提出了一种野生的优化方法,并认识到thamic方法转弯在离子中是富有成效的,我们已经获得了能量,原始和扩展的马尔可夫,(2)已引入两个标准类,并将其分类为简单的标准复合标准(范围已将策略类别与两个标准类相关联,并介绍了如何将原始问题嵌入到扩展的一系列问题中,(4)已应用(1)优化问题中获得的广泛优化问题获得的结果在数学财务中,我们有多种优化方法对各种各样的标准有用。 - 尤其是在较大的选项中,我们已经开发了一些新的衍生品评估。日期…太平洋选项,回顾美国的选项。作为摘要,我们具有DE DYAMIC优化方法,因此动态编程,递归方法和不变性嵌入材料可用于继承的广泛优化和/或评估问题(I )非添加性,非线性或(iii)只是打开了较少的差异
项目成果
期刊论文数量(274)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher order comparisons of nonparametric confidence intervals (Australian National CMA Research Report SRR02-005)
非参数置信区间的高阶比较(澳大利亚国家 CMA 研究报告 SRR02-005)
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Nonaka;Y.;Ando;T.;Konishi;S.;Yoshinobu Maesono
- 通讯作者:Yoshinobu Maesono
Mean square errors of ratio statistics and bias corrections
比率统计的均方误差和偏差校正
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Konishi;S.;Kitagawa;G.;Yoshinobu Maesono
- 通讯作者:Yoshinobu Maesono
Toshiharu Fujita: "An optimistic decision-making in fuzzy environment"Proceedings of "The Seventh BELLMAN CONTINUUM ; Appl. Math. Comp". 120・1/3. 123-137 (2001)
Toshiharu Fujita:“模糊环境中的乐观决策”《第七届 BELLMAN CONTINUUM ;Appl. Math. Comp》论文集 120・1/3(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IWAMOTO Seiichi其他文献
IWAMOTO Seiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IWAMOTO Seiichi', 18)}}的其他基金
An inclusive study of Bellman equation in dynamic programming and applications to mathematical economics
动态规划中贝尔曼方程的包容性研究及其在数理经济学中的应用
- 批准号:
22540144 - 财政年份:2010
- 资助金额:
$ 5.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STUDY OF CONTROLLED INTEGRAL EQUATIONS AND MATHEMATICAL FINANCE THROUGH DYNAMIC PROGRAMMING
通过动态规划研究受控积分方程和数学金融
- 批准号:
17340030 - 财政年份:2005
- 资助金额:
$ 5.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Construction of Optimal Decision-making Processes under Fuzzy Environment and/or under Uncertainty and its Applications
模糊环境和/或不确定性下最优决策过程的构建及其应用研究
- 批准号:
09480080 - 财政年份:1997
- 资助金额:
$ 5.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Dynamic Model of Input-output Structure and Its Application to Analysis of International Economic Collaboration
投入产出结构动态模型研究及其在国际经济合作分析中的应用
- 批准号:
07680467 - 财政年份:1995
- 资助金额:
$ 5.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)