the positivity of degenerate elliptic operators and the microlocal analysis on solutions for partial differentiai equations

简并椭圆算子的正性及偏微分方程解的微局域分析

基本信息

  • 批准号:
    12440038
  • 负责人:
  • 金额:
    $ 5.57万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2003
  • 项目状态:
    已结题

项目摘要

The purpose of this research is to study how the positivity of degenerate elliptic operators is reflected to the structure of solutions for partial differential equations, by using the theories of pseudo-differential operators, Fourier integral operators, harmonic analysis and stochastic calculus. Head investigator considered the Dirichlet problem for certain semilinear elliptic equations whose principal parts of second order degenerate infinitely, by joint research with Prof. Xu who is a foreigner joint research person. Firstly, the existence and the boundedness of solutions to this problem were shown, and secondly the continuity and C∞ regularity of solutions were clarified. The logarithmic regularity up estimate can be only expected for certain infinitely degenerate elliptic operators with weak positivity, differing from the case for elliptic operators with finite degeneracy. Under the assumption of this logarithmic regularity up estimate, we derived the Sobolev inequality of logari … More thmic type, and proved the existence of solutions to the Dirichlet problem by solving the associated variational problem. The proofs of the boundedness, the continuity and C∞ regularity of solutions to our problem are completely different from the traditional methods used for semilinear equations whose principal part is elliptic or sub-elliptic. Our method is based on the technique for C∞-hypoellipticity for linear infinitely degenerate elliptic operators. In relation to the positivity of degenerate elliptic operators, the recent results of J.-M.Bony and D.Tataru were examined, where the inequality of Fefferman-Phong concerning the positivity of pseudodifferential operators are discussed. As a joint research with Prof. Lerner who introduced firstly Wick calculus for the research of solvability of pseudodifferential operators of principal type, we showed that the Wick calculus is also applicable to the proof of Fefferman-Phong inequality instead of FBI operators employed in Tataru's paper. Our another proof is carried out in refining the product formula of Wick operators obtained in the joint work with Ando. An investigator Ueki studied the spectrum of a Schrodinger operator with the random magnetic field relevant to the microlocal analysis with infinitely degeneracy, found out that a density-of-states function have remarkably different structure in the case of Pauli Hamiltonian from the former case, and applied those results to research of the hypoellipticity for ∂b-Laplacian. From the point of view on the microlocal analysis for partial differential equations, the Goursat problem to the second order equation was considered by an investigator Tarama who extended Hasegawa's result by energy estimates, and the algebraic geometry structure of the particular solution to soliton equations was studied by an investigator Takasaki, in relation to the singular solutions for degenerate elliptic equations. Less
本研究的目的是利用伪微分算子、傅里叶积分算子、调和分析和随机微积分的理论,研究简并椭圆算子的正性如何体现在偏微分方程的解的结构中。与国外联合研究人员徐教授共同研究了某些二阶主部分无限退化的半线性椭圆方程的Dirichlet问题。给出了该问题的解,其次阐明了解的连续性和 C 正则性,与有限简并椭圆算子的情况不同,只能对某些具有弱正性的无限简并椭圆算子进行对数正则性向上估计。在这种对数正则性向上估计的假设下,我们推导了对数型Sobolev不等式,并通过求解证明了狄利克雷问题解的存在性相关的变分问题的解的有界性、连续性和 C∞ 正则性的证明与用于主要部分是椭圆或次椭圆的半线性方程的传统方法完全不同。对于线性无限简并椭圆算子的 C∞-亚椭圆性,J.-M.Bony 和 J.-M.Bony 的最新结果与简并椭圆算子的正性有关。对D.Tataru进行了检验,讨论了关于伪微分算子正性的Fefferman-Phong不等式,与首次引入Wick微积分研究主型伪微分算子可解性的Lerner教授进行了联合研究,结果表明: Wick 演算也适用于 Fefferman-Phong 不等式的证明,而不是 Tataru 论文中使用的 FBI 算子。我们的另一个证明是在与联合工作中改进的 Wick 算子的乘积公式中进行的。安藤研究员研究了与无限简并微局域分析相关的随机磁场薛定谔算子的谱,发现泡利哈密顿量的状态密度函数与前一种情况具有异常不同的结构。 ,并将这些结果应用到∂b-拉普拉斯的亚椭圆性研究中,研究者从偏微分方程的微局部分析的角度考虑了二阶方程的Goursat问题。 Tarama 通过能量估计扩展了长谷川的结果,研究人员 Takasaki 研究了孤子方程特定解的代数几何结构,与简并椭圆方程的奇异解相关。

项目成果

期刊论文数量(65)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
多羅間茂雄: "On the estimate of some conjugation"Mem.Fac.Eng.Osaka City Univ.. 41巻. 117-123 (2000)
Shigeo Tarama:“关于某些共轭的估计”Mem.Fac.Eng.Osaka City Univ.. 41. 117-123 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森本芳則: "Remark on the analytic smoothing for the Schrodinger equation"Indiana Univ.Math.. (未定).
Yoshinori Morimoto:“关于薛定谔方程的解析平滑的评论”印第安纳大学数学..(待定)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshinori Morimoto, Chao-Jiang Xu: "Regularity of weak solution for a class of infinitely degenerate ellitpic semilinear equations,"Seminaire Equations aux Derivees Partielles Ecole Polytechnique. VII-1-VII-14 (2003)
Yoshinori Morimoto、Chao-Jiang Xu:“一类无限退化椭圆半线性方程的弱解的正则性”,高等理工学院派生方程研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
畑 政義: "Pade approximation to the logarithmic derivative of the Gauss hypergeometric, function"Analytic Number Theory, Developments in Mathematics. 6巻. 157-172 (2002)
Masayoshi Hata:“高斯超几何函数的对数导数的帕德逼近”《解析数论》,《数学进展》第 6 卷。157-172 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIMOTO Yoshinori其他文献

MORIMOTO Yoshinori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORIMOTO Yoshinori', 18)}}的其他基金

The Boltzmann equation and nonlinear microlocal analysis
玻尔兹曼方程和非线性微局域分析
  • 批准号:
    22540187
  • 财政年份:
    2010
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal analysis on Boltzmann equation
Boltzmann方程的微局域分析
  • 批准号:
    18540213
  • 财政年份:
    2006
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal analysis for operators with infinite degeneracy
无限简并算子的微局域分析
  • 批准号:
    08454027
  • 财政年份:
    1996
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

Fokker-Planck算子和Witten Laplace算子的谱分析以及Boltzmann方程弱解的正则性研究
  • 批准号:
    11871054
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
几类非线性退化型偏微分方程解的研究
  • 批准号:
    11771342
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
某些流体动力学方程与非线性色散方程的数学研究
  • 批准号:
    11671047
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
带拟微分算子粘性项的守恒律方程解的大时间行为研究
  • 批准号:
    11501347
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
不可压缩流体力学方程组的相关研究
  • 批准号:
    11371347
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Geometry
微局部分析和几何
  • 批准号:
    2247004
  • 财政年份:
    2023
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Standard Grant
Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
  • 批准号:
    23K03186
  • 财政年份:
    2023
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal analysis and singularities
微局部分析和奇点
  • 批准号:
    2305363
  • 财政年份:
    2023
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Standard Grant
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
  • 批准号:
    DP220101808
  • 财政年份:
    2023
  • 资助金额:
    $ 5.57万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了