Exact WKB analysis and microlocal analysis

精确的 WKB 分析和微局部分析

基本信息

  • 批准号:
    11440042
  • 负责人:
  • 金额:
    $ 4.67万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

1°Concerning the Stokes geometry for higher order linear ordinary differential equations with a large parameter,(1) we first made a concrete and detailed study of Laplace-type equations with the help of the ordinary steepest descent method ([AKT5]), and then by musing on the WKB-theoretic meaning of the obtained results reflectively from the viewpoint of the Borel resummation,(2) we proposed in [AKT3] the exact steepest descent method that makes use of the newly invented notion "exact steepest descent paths" so that we may describe the Stokes geometry for general operators.(3) Some concrete but delicate issues in the Stokes geometry are examined by the exact steepest descent method in [AkoT] and [KoT].In view of the spiritual target of this project, the introduction of the exact steepest descent method into the exact WKB analysis is quite important, as it clearly exemplifies the complementary character of the exact WKB analysis and microlocal analysis, it shows that the global aspect o … More f the quantized Legendre transformation can be described in terms of the exact steepest descent paths.2° Non-adiabatic transition probabilities for Landau-Zener type problems are calculated on the basis of microlocal analysis of operators with multiple characteristics ([AKT1]). Important in its own right is the concrete algorithm for detecting virtual turning points for the operators in question.3° Microlocal structure of the S-matrix is studied ia [KS] when infra-red divergence is relevant.4° Natural boundaries of solution of non-liner ordinary differential equations are studied in [K] from the viewpoint of WKB analysis. Microlocal study of natural boundaries of Dirichlet series was also made in [KStr].5° Local theory of the exact WKB analysis for the infinite series of differential operators with a large parameter was developed in [AKKT] with the help of a quantized contact transformation, one of the basic notions in microlocal analysis.6° [T1] constructed the exact WKB analysis for systems of differential equations, and we are currently (2002) trying to apply it to the study of higher order Painlev」 equations (Noumi equation etc.). Less
1°Concerning the Stokes geometry for higher order linear ordinary differential equations with a large parameter,(1) we first made a concrete and detailed study of Laplace-type equations with the help of the ordinary steelepest descent method ([AKT5]), and then by musing on the WKB-theoretic meaning of the obtained results reflectively from the viewpoint of the Borel reservation,(2) we proposed in [AKT3]使用新发明的概念“确切的陡峭下降路径”的确切确切的最尖锐的下降方法,以便我们可以描述普通操作员的Stokes几何形状。(3)Stokes几何学中的某些具体但精致的问题在[Akot]和Spirt of Spirt of Invory of Incort of the of Interial of the of the of [akot]中的确切钢的精确词。 WKB分析非常重要,因为它清楚地说明了确切的WKB分析和微局部分析的完整特征,它表明,可以用确切的钢植物下降路径来描述全球方面。2°非绝热过渡可能性是根据Landau-Zener类型问题的基础来定量的。重要的是,重要的是用于检测有关操作员的虚拟转折点的混凝土算法。当infra-red Divergence是相关时,S-Matrix的3°微置结构是研究的。4°无线电差异方程式的自然界限是在[K]中研究的。在[KSTR]中,还对Dirichlet系列的自然界限进行了微局部。5°局部理论的局部理论的WKB分析的无限级别差异操作员的精确WKB分析在[AKKT]中开发了较大的参数,该量化了量化的接触转换,在微邻域分析中进行的基本注释之一,当前的基本注释之一[t1]构建的基本注释之一。它是针对高阶pachlev“方程(noumi方程等)的研究。

项目成果

期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Takei: "On a double turning point problem for systems of linear ordinary differential equations"
Y.Takei:“关于线性常微分方程组的双转点问题”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Aoki, T.Kawai, Y.Takei: "On a complete description of the Stokes geometry for higher order ordinary differential equations with a large parameter via integral representations"Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear
T.Aoki、T.Kawai、Y.Takei:“通过积分表示对具有大参数的高阶常微分方程的斯托克斯几何的完整描述”走向微分方程(线性或非线性)的精确 WKB 分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : a new method for the description of Stokes curves"J. Math. Phys.. 42. 3691-3713 (2001)
T.Aoki,T.Kawai,Y.Takei:“论精确最速下降法:一种描述斯托克斯曲线的新方法”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAI Takahiro其他文献

KAWAI Takahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAI Takahiro', 18)}}的其他基金

The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
  • 批准号:
    24340026
  • 财政年份:
    2012
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure theory of higher order Painleve equations through exact WKB analysis
通过精确 WKB 分析的高阶 Painleve 方程的结构理论
  • 批准号:
    20340028
  • 财政年份:
    2008
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exact WKB analysis of higher order differential equations that is centered around the notion of a virtual turning point
以虚拟转折点概念为中心的高阶微分方程的精确 WKB 分析
  • 批准号:
    17340035
  • 财政年份:
    2005
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural analysis of differential equations by the exact WKB method
通过精确 WKB 方法进行微分方程的结构分析
  • 批准号:
    14340042
  • 财政年份:
    2002
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of singular perturbations
奇异摄动理论
  • 批准号:
    08454029
  • 财政年份:
    1996
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

Fokker-Planck算子和Witten Laplace算子的谱分析以及Boltzmann方程弱解的正则性研究
  • 批准号:
    11871054
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
几类非线性退化型偏微分方程解的研究
  • 批准号:
    11771342
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
某些流体动力学方程与非线性色散方程的数学研究
  • 批准号:
    11671047
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
带拟微分算子粘性项的守恒律方程解的大时间行为研究
  • 批准号:
    11501347
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
不可压缩流体力学方程组的相关研究
  • 批准号:
    11371347
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Geometry
微局部分析和几何
  • 批准号:
    2247004
  • 财政年份:
    2023
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Standard Grant
Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
  • 批准号:
    23K03186
  • 财政年份:
    2023
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microlocal analysis and singularities
微局部分析和奇点
  • 批准号:
    2305363
  • 财政年份:
    2023
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Standard Grant
Microlocal Analysis - A Unified Approach for Geometric Models in Biology
微局部分析 - 生物学中几何模型的统一方法
  • 批准号:
    DP220101808
  • 财政年份:
    2023
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了