Exact WKB analysis of higher order differential equations that is centered around the notion of a virtual turning point
以虚拟转折点概念为中心的高阶微分方程的精确 WKB 分析
基本信息
- 批准号:17340035
- 负责人:
- 金额:$ 6.94万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Along the flow line described in "Toulouse Project', which is designed to clarify the structure of higher order Painleve equations, we have obtained the following results.1. A O-parameter solution of (P_J)m (J= I, II, IV) is locally and formally transformed to a 0-parameter solution of (P_I)_I near a turning point of the first kind.(T. Kawai and Y. Takei: Advances in Math., 203 (2006))2. Construction of a (2m)-parameter solution of instanton-type of (P_J)m (J= I, II, IV) (Y. Takei (2008), T. Koike: Kokyuroku Bessatsu, B2 (2007), B5 (2008))3. For each turning point of (P_J)m (J= I, U, IV) of the first kind, an instanton-type solution associated with the turning point can be locally and formally transformed to a 2-parameter solution of (P_I)_I. (T. Kawai and Y. Takei: Kokyuroku Bessatsu, B5 (2008))4. Each (P_J)m (J= I, II, IV) is isomorphic to an appropriate degenerate Gamier system restricted to some complex line. (T. Koike: Kokyuroku Bessatsu, B2 (2007), B5 (2008))In addition to the progress in the study of (P_J)m, we have made a substantial progress in the study of virtual turning points through the investigation of the Stokes geometry of another higher order Painleve equation called the Noumi-Yamada system. (P. Kawai et al. (2008)) Furthermore a novel treatment of several infinite series in exact WKB analysis with the aid of infinite order differential operator has been found by T. Aoki, T. Kawai and Y. Takei (RIMS Preprint 1616 (2007)).A conference centered around these results was held from January 28 through February 1, 2008 at CIRM (Centre International de Rencontres Mathematiques) in Marseilles (France). It turned out to be an intensive and fruitful meeting with many foreign (neither French nor Japanese) participants.
沿着“图卢兹计划”中描述的旨在阐明高阶 Painleve 方程结构的流程,我们得到了以下结果: 1. (P_J)m (J= I, II, IV) 在第一类转折点附近被局部形式化地转换为 (P_I)_I 的 0 参数解。(T. Kawai 和 Y. Takei:数学进展,203 (2006))2. (P_J)m 瞬子型 (J= I, II, IV) 的 (2m) 参数解的构造 (Y. Takei (2008), T. Koike: Kokyuroku Bessatsu, B2 ( 2007), B5 (2008))3. 对于第一类 (P_J)m (J= I, U, IV) 的每个转折点,有瞬子型解与转折点相关的可以局部且正式地转换为 (P_I)_I 的 2 参数解(T. Kawai 和 Y. Takei:Kokyuroku Bessatsu,B5 (2008))4。 I、II、IV) 与受限于某些复杂系的适当简并 Gamier 系统同构(T. Koike:Kokyuroku Bessatsu,B2)。 (2007), B5 (2008)) 除了 (P_J)m 的研究进展外,我们通过研究另一个高阶 Painleve 方程(称为努海-山田系统。 (P. Kawai 等人 (2008))此外,T. Aoki、T. Kawai 和 Y. Takei 还发现了一种在精确 WKB 分析中借助无限阶微分算子对多个无穷级数进行新颖处理的方法(RIMS 预印本 1616) (2007))。围绕这些结果的会议于 2008 年 1 月 28 日至 2 月 1 日在 CIRM(国际数学竞赛中心)举行马赛(法国)。事实证明,这是一次密集且富有成效的会议,有许多外国(既不是法国也不是日本)参与者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations
- DOI:10.1088/0305-4470/38/15/007
- 发表时间:2004-09
- 期刊:
- 影响因子:0
- 作者:T. Aoki;T. Kawai;Shu Sasaki;A. Shudo;Yoshitsugu Takei
- 通讯作者:T. Aoki;T. Kawai;Shu Sasaki;A. Shudo;Yoshitsugu Takei
Algebraic Analysis of Singular Perturbation Theory
- DOI:10.1090/mmono/227
- 发表时间:2005-11
- 期刊:
- 影响因子:0
- 作者:T. Kawai;Yoshitsugu Takei
- 通讯作者:T. Kawai;Yoshitsugu Takei
Construction of formal solutions of Painleve hierarchies
Painleve 层次结构的正式解决方案的构建
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.;Kawai;T. Kawai;青木貴史
- 通讯作者:青木貴史
On the systems of algebraic equations associated with the Noumi-Yamada equations
与 Noumi-Yamada 方程相关的代数方程组
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.;Koike;T. Aoki with N. Honda
- 通讯作者:T. Aoki with N. Honda
Instanton-type formal solutions for the first Painleve hierarchy
第一个 Painleve 层次结构的 Instanton 型形式化解
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T. Kawai;et. al.;Y. Takei
- 通讯作者:Y. Takei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWAI Takahiro其他文献
KAWAI Takahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWAI Takahiro', 18)}}的其他基金
The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
- 批准号:
24340026 - 财政年份:2012
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure theory of higher order Painleve equations through exact WKB analysis
通过精确 WKB 分析的高阶 Painleve 方程的结构理论
- 批准号:
20340028 - 财政年份:2008
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structural analysis of differential equations by the exact WKB method
通过精确 WKB 方法进行微分方程的结构分析
- 批准号:
14340042 - 财政年份:2002
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exact WKB analysis and microlocal analysis
精确的 WKB 分析和微局部分析
- 批准号:
11440042 - 财政年份:1999
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory of singular perturbations
奇异摄动理论
- 批准号:
08454029 - 财政年份:1996
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
高阶差分的值分布及差分Painleve IV 方程的亚纯解
- 批准号:11801110
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural analysis of differential equations by the exact WKB method
通过精确 WKB 方法进行微分方程的结构分析
- 批准号:
14340042 - 财政年份:2002
- 资助金额:
$ 6.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)