Stabilization problem for nonlinear wave eq

非线性波方程的镇定问题

基本信息

  • 批准号:
    10440053
  • 负责人:
  • 金额:
    $ 6.72万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

The head investigator. Nakao. has considered the stabilization problem for the nonlinear wave equations in interior and exterior domains and also the behaviours of solutions for nonlinear heat equations.For exterior problems. we first proved the local energy decay for linear wave equations. and on the basis of this we have derived L^p estimates. Further. by use of these estimates we have discussed on the global existence of semilinear wave equations. We note that in our argument no geometrical conditions on the shape of obstacles.For interior problems. we have proved global existence of smooth solutions for the quasilinear wave equations with a very weak dissipative term. In this procedure we have showed a unique continuation property for the wave equation with a variable coefficient. Nakao's inequality was used for the decay estimate. which is an originality of this paper.Concernibg nonlinear heat equations we have treated meancurvature type and m-laplacian type quasilinear equations under various nonlinear perturbations. We have derived sharp estimates of solutions including asymptotics as t → ∞ and smoothing effects near t = O.Investigator Kawashima has mainly treated the equations concerning gas dynamics and shown many interesting results. Investigator Shibata has considered the visco-elastic wave equations and also exterior problems concerning fluid dynamicsand prove many new results by use of spectral analysis. Investigator Kato has discussed on the global solutions of a non-Newtonian flow equation.
首席研究员 Nakao 考虑了内部和外部域中的非线性波动方程的稳定性问题以及非线性热方程的解的行为。对于外部问题,我们首先证明了线性波动方程的局部能量衰减。在此基础上,我们进一步通过使用这些估计来讨论半线性波动方程的全局存在性,我们注意到在我们的论证中没有关于障碍物形状的几何条件。我们已经证明全球具有非常弱耗散项的拟线性波动方程的光滑解的存在性在这个过程中,我们展示了具有可变系数的波动方程的独特连续性,该性质被用于衰减估计。关于非线性热方程,我们在各种非线性扰动下处理了平均曲率型和 m-拉普拉斯型拟线性方程,我们导出了包括渐近方程在内的解的锐估计: t → ∞ 和 t = O 附近的平滑效应。川岛研究员主要研究了有关气体动力学的方程,并给出了许多有趣的结果。柴田研究员考虑了粘弹性波动方程以及有关流体动力学的外部问题,并证明了许多新结果。研究者加藤讨论了非牛顿流动方程的全局解。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S. Kawashima 他: "A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics"Indiana Univ. Math. J.. (to appear). (2000)
S. Kawashima 等人:“辐射流体动力学中双曲椭圆耦合系统的奇异极限”印第安纳大学数学杂志(2000 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中尾慎宏: "概説 微分方程式" サイエンス社, 155 (1999)
Nobuhiro Nakao:《微分方程概述》科学出版社,155(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuhiro Nakao et al.: "Global existence and gradient estimates for a quasilinear parabolic equation of m-Laplacian type with …"J.Differential Equations. 162. 224-250 (2000)
Mitsuhiro Nakao 等人:“m-拉普拉斯型拟线性抛物方程的全局存在性和梯度估计……”J.Differential Equations 162. 224-250 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuhiro Nakao: "L^p estimates for the wave equation and global existence for the semilinear wave equations in exterior domains"Math.Ann. (in press.). (2001)
Mitsuhiro Nakao:“波动方程的 L^p 估计和外部域中半线性波动方程的全局存在性”Math.Ann。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Kawashima 他: "Canchy problem for a model system of the rodiating gas: Weak solutions with a jump and dassical solutions"Math. Models Meth. Appl. Sci,. 9. 69-91 (1999)
S. Kawashima 等人:“旋转气体模型系统的 Canchy 问题:具有跳跃和 Dassical 解的弱解”Math Appl. 9. 69-91 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAO Mitsuhiro其他文献

NAKAO Mitsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAO Mitsuhiro', 18)}}的其他基金

A study on the numerical verification method of solutions with high accuracy for the nonlinear mathematical models in infinite dimension
无限维非线性数学模型高精度解的数值验证方法研究
  • 批准号:
    15K05012
  • 财政年份:
    2015
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical verification method of solutions for nonlinear evolutional equations
非线性演化方程解的数值验证方法
  • 批准号:
    24540151
  • 财政年份:
    2012
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer assisted analysis for complicated nonlinear phenomena
复杂非线性现象计算机辅助分析的发展
  • 批准号:
    20224001
  • 财政年份:
    2008
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Asymptotic behaivours of solutions for nonlinear wave equations
非线性波动方程解的渐近行为
  • 批准号:
    17340040
  • 财政年份:
    2005
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic approach for the development of computer assisted analysis from the numerical verification methods
从数值验证方法发展计算机辅助分析的综合方法
  • 批准号:
    15204007
  • 财政年份:
    2003
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Synthetic approach for new developments of self-validating numerics
自验证数值新发展的综合方法
  • 批准号:
    13440035
  • 财政年份:
    2001
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exterior problem for nonlinear wave equations
非线性波动方程的外问题
  • 批准号:
    13440049
  • 财政年份:
    2001
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

全球本土品牌偏好逆转现象的存在及引致因素研究:理性、认知与情感的框架
  • 批准号:
    71402091
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
  • 批准号:
    21K03324
  • 财政年份:
    2021
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Existence and Computer-Assisted Proofs of Singularities in Incompressible Fluids
不可压缩流体奇点的整体存在性和计算机辅助证明
  • 批准号:
    1763356
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Continuing Grant
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
  • 批准号:
    18H01128
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Existence for a Singular General Activator-Inhibitor Model
单一通用激活剂-抑制剂模型的全球存在
  • 批准号:
    496631-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.72万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了