Toward investigating the intrinsic mechanism of accelerated (sub)gradient methods for convex optimization problems
研究凸优化问题的加速(次)梯度方法的内在机制
基本信息
- 批准号:18K11178
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2018
- 资助国家:日本
- 起止时间:2018-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DC最適化問題に対するBregman距離を用いた近接アルゴリズムと複素最適化問題への拡張
使用 Bregman 距离的邻近算法解决 DC 优化问题以及扩展到复杂的优化问题
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:髙橋翔大;福田光浩;田中未来
- 通讯作者:田中未来
Nearly optimal first-order method under Holderian error bound: An adaptive proximal point approach
霍尔德误差界下的近乎最优一阶方法:自适应近点方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Masaru Ito;Mituhiro Fukuda
- 通讯作者:Mituhiro Fukuda
Nearly Optimal First-Order Methods for Convex Optimization under Gradient Norm Measure: An Adaptive Regularization Approach
梯度范数测度下凸优化的近乎最优一阶方法:一种自适应正则化方法
- DOI:10.1007/s10957-020-01806-7
- 发表时间:2021
- 期刊:
- 影响因子:1.9
- 作者:Masaru Ito;Mituhiro Fukuda
- 通讯作者:Mituhiro Fukuda
DC最適化問題に対するBregman距離を用いた近接アルゴリズム
使用 Bregman 距离的邻近算法解决 DC 优化问题
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:髙橋翔大;福田光浩;田中未来
- 通讯作者:田中未来
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fukuda Mituhiro其他文献
Exact SDP relaxations of quadratically constrained quadratic programs with forest structures
具有森林结构的二次约束二次规划的精确 SDP 松弛
- DOI:
10.1007/s10898-021-01071-6 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
Azuma Godai;Fukuda Mituhiro;Kim Sunyoung;Yamashita Makoto - 通讯作者:
Yamashita Makoto
Exact SDP relaxations of quadratically constrained quadratic programs with forest structures
具有森林结构的二次约束二次规划的精确 SDP 松弛
- DOI:
10.1007/s10898-021-01071-6 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
Azuma Godai;Fukuda Mituhiro;Kim Sunyoung;Yamashita Makoto - 通讯作者:
Yamashita Makoto
Fukuda Mituhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fukuda Mituhiro', 18)}}的其他基金
Accelerated (sub)gradient methods for large-scale convex optimization problems - with emphasis in the theoretical aspects of the implementation and its applications -
用于大规模凸优化问题的加速(次)梯度方法 - 重点是实现及其应用的理论方面 -
- 批准号:
26330024 - 财政年份:2014
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
直列型システムに対する経営効率性分析の理論構築と実証分析
串行系统管理效率分析的理论构建与实证分析
- 批准号:
22K04588 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
準凸最適化問題に対する劣微分を用いた最適性条件について
半凸优化问题的次微分的最优性条件
- 批准号:
22K03413 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric inequalities of dual volumes of convex bodies and properties of additions of convex bodies derived from the inequalities
凸体对偶体积的几何不等式及由不等式导出的凸体相加性质
- 批准号:
20K14320 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing Mathematical Methods for Applying Hyperspectral Imaging to Earth Observation
开发将高光谱成像应用于地球观测的数学方法
- 批准号:
20K11951 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization modeling via convex optimization
通过凸优化进行优化建模
- 批准号:
20K11696 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)