Diffeomorphism and homeomorphism groups of 4-manifolds and gauge theory for families

4流形的微分同胚和同胚群以及族规范理论

基本信息

项目摘要

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A note on generalized Thurston-Bennequin inequalities
关于广义 Thurston-Bennequin 不等式的说明
  • DOI:
    10.1142/s0129167x22500896
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Nobuo Iida; Hokuto Konno;Masaki Taniguchi
  • 通讯作者:
    Masaki Taniguchi
Homological instability for moduli spaces of 4-manifolds
4 流形模空间的同调不稳定性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hokuto Konno
  • 通讯作者:
    Hokuto Konno
Positive scalar curvature and homology cobordism invariants
正标量曲率和同调协边不变量
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今野北斗
  • 通讯作者:
    今野北斗
Involutions, knots, and Floer K-theory
对合、纽结和 Floer K 理论
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今野北斗
  • 通讯作者:
    今野北斗
Rigidity of the mod 2 families Seiberg-Witten invariants
mod 2 系列 Seiberg-Witten 不变量的刚性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今野 北斗
  • 通讯作者:
    今野 北斗
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konno Hokuto其他文献

A cohomological Seiberg?Witten invariant emerging from the adjunction inequality
由附加不等式产生的上同调 Seiberg?Witten 不变量
  • DOI:
    10.1112/topo.12215
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Konno Hokuto
  • 通讯作者:
    Konno Hokuto
On the Bauer-Furuta and Seiberg-Witten invariants of families of 4‐manifolds
关于 4 流形族的 Bauer-Furuta 和 Seiberg-Witten 不变量
  • DOI:
    10.1112/topo.12229
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Baraglia David;Konno Hokuto
  • 通讯作者:
    Konno Hokuto
Constraints on families of smooth 4?manifoldsfrom Pin(2)-monopole
Pin(2)-单极子光滑 4 流形族的约束
  • DOI:
    10.2140/agt.2023.23.419
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konno Hokuto;Nakamura Nobuhiro
  • 通讯作者:
    Nakamura Nobuhiro
A cohomological Seiberg?Witten invariant emerging from the adjunction inequality
由附加不等式产生的上同调 Seiberg?Witten 不变量
  • DOI:
    10.1112/topo.12215
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Konno Hokuto
  • 通讯作者:
    Konno Hokuto
Constraints on families of smooth 4?manifoldsfrom Pin(2)-monopole
Pin(2)-单极子光滑 4 流形族的约束
  • DOI:
    10.2140/agt.2023.23.419
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konno Hokuto;Nakamura Nobuhiro
  • 通讯作者:
    Nakamura Nobuhiro

Konno Hokuto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ゲージ理論からの無限次元力学系とホモトピー論による低次元多様体の不変量
来自规范理论的无限维动力系统的不变量和来自同伦理论的低维流形
  • 批准号:
    19K03493
  • 财政年份:
    2019
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ゲージ理論の4次元トポロジーへの応用
规范理论在四维拓扑中的应用
  • 批准号:
    16J05569
  • 财政年份:
    2016
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Derivation of duality and integrability from M-theory
从 M 理论推导出对偶性和可积性
  • 批准号:
    25400246
  • 财政年份:
    2013
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of D-brane and Black hole by nonperturbative formulation of string theory
用弦理论的非微扰公式分析 D 膜和黑洞
  • 批准号:
    20540253
  • 财政年份:
    2008
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for low-dimensional manifdds with various geometric structures
各种几何结构的低维流形研究
  • 批准号:
    10640074
  • 财政年份:
    1998
  • 资助金额:
    $ 1.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了