X-ray microscopy as a fast response tool to exploit processing-microstructure-property relationships for advanced material development
X 射线显微镜作为快速响应工具,可利用加工-微观结构-性能关系进行先进材料开发
基本信息
- 批准号:316923185
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Major Instrumentation Initiatives
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the process-microstructure-property relationship is crucial for the development of new materials. Thus, the objective of the research consortium is to understand the fundamental mechanisms that govern effects such as bonding of different materials, pore density evolution or spatial distribution of phases within a matrix. So far, analytical techniques like optical or electron microscopy are used to address these issues. What limits research in this field often is not lateral resolution, but the fact that the data obtained comes only from cross-sections. In addition, sample preparation of materials is a time-consuming process, and thus, is a major roadblock for materials and process development. One approach for 3D material characterisation is the combination of scanning electron microscopy (SEM) with a focused-ion beam (FIB). Due to the low erosion rates of the FIB, the volume that can be probed is, however, extremely small. By contrast, with the advent of the X ray microscope (XRM) technique significantly larger volume can be analysed with a resolution appropriate to address many question in materials science. In addition, the ease of sample preparation along with the high-throughput in automated operation mode opens up a new avenue in terms of feedback rate from material characterization to process development. The proposed instrument will be intensely used for collaborative research within the research consortium with members from the ZFM (Zentrum für Festkörperchemie und Neue Materialien/Centre for Solid State Chemistry and New Materials), the Hannover Medical School, and the Institute of Continuum Mechanics. The research will address a wide field in materials science and cover Integrated Computational Materials Engineering (ICME) approaches, development of new materials for biomedical applications as well as topics from mineralogy regarding natural materials. For many of the projects, spatial distribution of phases or defect densities and their evolution are of interest. Moreover, the response of materials under mechanical loading and/or chemical exposure will be studied in-situ in the XRM. With the XRM 3D diffraction information can be obtained as well. This data will be employed to correlation damage evolution with microstructural parameters such as the locally present texture. The XRM will also be combined with the already available microscopic techniques to characterize the materials on multiple length scales. This approach will then be used as an efficient tool to validate the advanced multi-scale models currently developed by the continuum mechanics community.
了解过程 - 微观结构 - 特制关系对于开发新材料至关重要。这是研究联盟的目的是了解控制效果的基本机制,例如不同材料的键,孔密度进化或矩阵中相的空间分布。到目前为止,使用光学或电子显微镜等分析技术来解决这些问题。限制该领域的研究通常不是以后的解决方案,而是获得的数据仅来自横截面。此外,材料的样品制备是一个耗时的过程,因此是材料和过程开发的主要障碍。 3D材料表征的一种方法是将扫描电子显微镜(SEM)与聚焦-ion束(FIB)的组合组合。由于FIB的侵蚀速率较低,因此可以探测的体积极小。相比之下,随着X射线显微镜(XRM)技术的冒险,可以使用适当解决材料科学中许多问题的分辨率进行大量分析。此外,自动操作模式中的样品制备以及高通量的易度性,从材料表征到过程开发的反馈率方面开辟了新的途径。该拟议的工具将与ZFM(Zentrum)Festkörperchemieand Neue MealityLien/固态化学和新材料中心,汉诺威医学院和Continuum Mechinumics的ZFM(Zentrum)Festkörperchemie和Neue Mealitylien/Neue MealityLien/Neue Mealitylien/Neue MealitalLien/Neue MealityLien/Center in Contruum Mechinument的成员进行积极用于研究联盟的合作研究。该研究将介绍材料科学领域的广泛领域,并涵盖综合计算材料工程(ICME)方法,开发用于生物医学应用的新材料以及矿物学关于天然材料的主题。对于许多项目,阶段或缺陷密度的空间分布及其进化是感兴趣的。此外,将在XRM中研究机械载荷和/或化学暴露的材料的响应。使用XRM 3D衍射信息也可以获得。该数据将用于将损害演变与微结构参数(例如本地质地)相关联。 XRM还将与已经可用的显微镜技术结合使用,以表征多个长度尺度的材料。然后,该方法将用作验证Continuum Mechanics社区当前开发的高级多规模模型的有效工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Hans Jürgen Maier其他文献
Professor Dr.-Ing. Hans Jürgen Maier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Hans Jürgen Maier', 18)}}的其他基金
Mechanisms of Nanoparticles as Novel Grain Refiners for Thermo-mechanically Loaded Aluminum Cast Components
纳米颗粒作为热机械负载铝铸件的新型晶粒细化剂的机制
- 批准号:
320151432 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Aluminium alloys with controlled melting ranges for process-integrated foaming during extrusion
具有受控熔化范围的铝合金,用于挤压过程中的工艺集成发泡
- 批准号:
324394568 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
3D-Modelling of thermo-mechanically and thermo-chemically coupled microstructural changes in high-temperature nickel-base superalloys
高温镍基高温合金热机械和热化学耦合微观结构变化的 3D 建模
- 批准号:
282253287 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Interfacial effects and ingrowing behavior of magnesium-based foams as bioresorbable bone substitue material
镁基泡沫作为生物可吸收骨替代材料的界面效应和向内生长行为
- 批准号:
271761343 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Reduced functional degradation of a magnetic shape memory alloy by aging under stress
减少磁性形状记忆合金因应力老化而导致的功能退化
- 批准号:
259317613 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Increase of the thermal conductivity of aluminum-copper compound castings by selective modification of the interface
通过选择性界面改性提高铝铜复合铸件的导热率
- 批准号:
261481227 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Magnetic transformations during mechanical loading of magnetocaloric materials based on Heusler alloys
基于 Heusler 合金的磁热材料机械加载过程中的磁转变
- 批准号:
234141871 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Central project: Coordination of the research unit
中心项目:研究单位的协调
- 批准号:
222156079 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Thermomechanical Fatigue of Ti-Ta-X-Y High-Temperature Shape Memory Alloys: Cyclic Stress-Strain Response and Damage Evolution
Ti-Ta-X-Y 高温形状记忆合金的热机械疲劳:循环应力-应变响应和损伤演化
- 批准号:
222155351 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Optimierung der funktionellen Stabilität vielkristalliner NiTi-Legierungen durch gezielte Einstellung von Ni4Ti3 Ausscheidungsvarianten
通过有针对性地调整 Ni4Ti3 沉淀变体来优化多晶 NiTi 合金的功能稳定性
- 批准号:
209613999 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
铁基122相超导薄膜的制备、调控和原位扫描隧道显微镜研究
- 批准号:12304164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
快速高温扫描隧道显微镜技术及应用其研究二维二氧化硅的表面结构动力学过程
- 批准号:22372053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
部分相干数字全息三维层析显微成像方法研究
- 批准号:62335018
- 批准年份:2023
- 资助金额:232.00 万元
- 项目类别:重点项目
靶向分子超声定位显微镜对肝衰竭微循环障碍和炎症可视化及治疗的实验研究
- 批准号:82302222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声定位显微镜技术的2型糖尿病病程可视化研究
- 批准号:82371968
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Evaluation of tantalum oxide nanoparticles for in vivo X-ray computed tomography evaluation of implantable biomaterials
氧化钽纳米颗粒用于植入式生物材料体内 X 射线计算机断层扫描评估的评估
- 批准号:
10326392 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Equipment Supplement: Analysis tools for quantifying protein conformational landscapes using DEER spectroscopy
设备补充:使用 DEER 光谱定量蛋白质构象景观的分析工具
- 批准号:
10385498 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fast X-ray Microscopy to Quantify the Nucleation of Hot Cracking
快速 X 射线显微镜量化热裂纹成核
- 批准号:
1905910 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Structure and Specificity of Restriction-Modification (R-M) Systems
限制性修饰(R-M)系统的结构和特异性
- 批准号:
10797690 - 财政年份:2019
- 资助金额:
-- - 项目类别:
CAREER: Towards Fast, Multi-Parametric, Low-Radiation X-Ray Microscopy
职业:迈向快速、多参数、低辐射 X 射线显微镜
- 批准号:
1652892 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant