幾何学的群論とK3曲面 --- Gromov双曲性による自己同型群へのアプローチ

几何群论和K3曲面——使用格罗莫夫双曲线的自同构群方法

基本信息

  • 批准号:
    21J13227
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2021
  • 资助国家:
    日本
  • 起止时间:
    2021-04-28 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

昨年度に引き続き、楕円的K3曲面の自己同型群について、特にその実質的コホモロジー次元(以下、vcd)について調べた。本研究では、幾何学的群論を用いた自己同型群の分類理論の構築やvcdの計算手法の確立を目的としている。昨年度は、楕円的K3曲面、エンリケス曲面、Coble曲面の自己同型群のvcdに関する予想からvcdをピカール数で不等式評価することを試みていた。この不等式は既知であるものの幾何学的群論の応用可能性探索のため調べていた。結果、Mordell-Weil群の階数が2以上となる楕円曲面構造が存在するという条件付きではあるが、幾何学的群論を用いて比較的容易に示すことができ、このことを昨年度の報告書に記載した。しかし、この手法も本質的に既知であるとのご指摘を頂いたため、ここで訂正したい。本年度は新たに、楕円的K3曲面の自己同型群が幾何学的群論の対象として、どのような枠組みに属しているか、という観点から調べた。幾何学的群論における基本的な対象に双曲群というものがあるが、双曲群は階数2の自由アーベル群を含まないことが知られている。よって、楕円的K3曲面の自己同型群は一般に双曲群にはならない。そのためより広く研究調査をし、幾何学群論や古典的な双曲多様体などの言葉で楕円的K3曲面の自己同型群を捉えたい、という方針を立てた。しかしながら今のところ、vcdを計算する上で有用な枠組みが見つからず、引き続き今後の研究課題として残っている。
从去年开始,我们调查了椭圆形K3表面的自动形态组,特别是其实质性的共同体学维度(以下是称为VCD)。这项研究旨在使用几何组理论构建自动组群体的分类理论,并建立VCD计算方法。去年,我们试图根据对椭圆形K3表面,Enriquez表面和Coble表面的VCD的预测来评估VCD的不平等现象。尽管已知这种不平等,但已研究以探索几何群体理论的应用可能性。结果,尽管存在椭圆表面结构,等级为2个或以上,但使用几何组理论可以相对容易地显示出来,这在去年的报告中得到了描述。但是,我已经指出,这种方法也是本质上已知的,因此我想在这里对其进行纠正。今年,我们从椭圆形K3表面的自我形态属于几何群体理论的框架的角度研究了以下内容。双曲线组是几何群体理论的基本对象,但众所周知,双曲线组不包括等级2的免费亚伯组。因此,椭圆形K3表面的自身形态组通常不是双曲线组。因此,我们进行了研究,并提出了使用诸如几何组理论和经典双曲线歧管之类的术语来捕获椭圆形K3表面自动形态的政策。但是,目前,尚未发现用于计算VCD的有用框架,它仍然是未来的研究主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

高津 大樹其他文献

高津 大樹的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New developments of hypergeometric functions and hypergeometric groups
超几何函数和超几何群的新进展
  • 批准号:
    22K03365
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of computer-aided research in algebraic geometry
代数几何计算机辅助研究的新进展
  • 批准号:
    20H01798
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
格子、保型形式とK3曲面、エンリケス曲面の研究
晶格、自守形式、K3 曲面和 Henriques 曲面的研究
  • 批准号:
    20H00112
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematics on Calabi-Yau manifolds and related topics
Calabi-Yau 流形数学及相关主题
  • 批准号:
    20K03530
  • 财政年份:
    2020
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural study of automorphisms of Enriques surfaces
Enriques曲面自同构的结构研究
  • 批准号:
    19K03411
  • 财政年份:
    2019
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了