I-Corps: Translation potential of using provenance-based threat detection for improving cybersecurity
I-Corps:使用基于来源的威胁检测来提高网络安全的转化潜力
基本信息
- 批准号:2424261
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The broader impact of this I-Corps project is the development of technology for securing computer workstations and servers from attack. The approach based on the historical record that traces data from its original source to its current location (called data provenance analysis). Securing endpoint computers is a vital component of enterprise security. Current solutions adopt a strategy for detecting attacks by comparing endpoint activity to a set of detection rules that describe common attack behaviors. However, this is an error prone practice, leading to large volumes of false alerts while failing to detect sophisticated attacks. In addition, the maintenance requirements of investigating these false alerts pose a formidable challenge within smaller to medium-sized businesses (SMBs), which lack the necessary security resources and personnel. This impediment is even more visible within SMBs housing sensitive user data, where a security breach can have profound and enduring financial and societal consequences. This technology may be used to establish data provenance analysis as a more precise and practical means of detecting attacks on endpoints. In addition, this solution may save U.S. companies millions of dollars by thwarting attacks that could have otherwise resulted in the compromise of customer data.This I-Corps project utilizes experiential learning coupled with a first-hand investigation of the industry ecosystem to assess the translation potential of the technology. The solution is based on the development of analysis of data provenance to ensure cyber security. Data provenance techniques incrementally parse individual endpoint events (e.g., process executions and file accesses) into a causal dependency graph that describes the history of system execution. The graphical representation of endpoint activity highlights the relationships between objects, making it easier to identify suspicious activities. A key finding of this research is a method of overcoming the inherent architectural limitations in the machine learning models used to analyze data provenance graphs. Leveraging this method, a model was trained that comprehensively captures the typical behavior of programs by associating them with their full historical context. Attacks are detected by comparing suspicious programs to the models’ expectations of each program’s behavior, which is informed by the programs’ provenance. This approach significantly reduces the occurrence of false alerts when compared to current endpoint security solutions, while also eliminating the need for frequent system tuning such as the adding and removing of detection rules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目的更广泛影响是开发保护计算机工作站和服务器免受攻击的技术,该方法基于从原始来源跟踪数据到当前位置的数据(称为数据来源分析)。计算机是企业安全的重要组成部分。当前的解决方案采用一种通过将端点活动与描述常见攻击行为的检测规则进行比较来检测攻击的策略,但是,这是一种容易出错的做法,会导致大量错误警报。无法检测复杂的攻击。此外,调查这些虚假警报的维护要求对中小型企业 (SMB) 构成了巨大的挑战,因为这些企业缺乏必要的安全资源和人员,这种障碍在存储敏感用户数据的中小型企业中更为明显。安全漏洞可能会产生深远而持久的财务和社会后果。该技术可用于建立数据来源分析,作为检测端点攻击的更精确和实用的方法。此外,该解决方案还可以为美国公司节省数百万美元。阻止可能导致客户项目数据泄露的攻击。该 I-Corps 利用体验式学习以及对行业生态系统的第一手调查来评估该技术的翻译潜力。该解决方案基于以下技术的开发。数据来源分析以确保网络安全。数据来源技术逐步将各个端点事件(例如进程执行和文件访问)解析为描述系统执行历史的因果依赖图。端点活动的图形表示突出了之间的关系。这项研究的一个重要发现是克服用于分析数据来源图的机器学习模型的固有架构限制的方法,利用该方法训练了一个全面捕获典型活动的模型。通过将可疑程序与模型对每个程序行为的预期进行比较来检测程序的行为,与此方法相比,这种方法显着减少了错误警报的发生率。当前端点该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Bates其他文献
Poster: What Behaviors Are in Your System Log Dataset?
海报:您的系统日志数据集中有哪些行为?
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Jason Liu;Andy Riddle;Kim Westfall;Adam Bates - 通讯作者:
Adam Bates
Logging to the Danger Zone: Race Condition Attacks and Defenses on System Audit Frameworks
记录到危险区域:系统审计框架的竞态条件攻击和防御
- DOI:
10.1145/3372297.3417862 - 发表时间:
2020-10-30 - 期刊:
- 影响因子:0
- 作者:
Riccardo Paccagnella;Kevin Liao;D. Tian;Adam Bates - 通讯作者:
Adam Bates
Mo(bile) Money, Mo(bile) Problems
移动(胆)钱,移动(胆)问题
- DOI:
10.1145/3092368 - 发表时间:
2017-08-11 - 期刊:
- 影响因子:0
- 作者:
Bradley Reaves;Jasmine Bowers;Nolen Scaife;Adam Bates;Arnav Bhartiya;Patrick Traynor;Kevin R. B. Butler - 通讯作者:
Kevin R. B. Butler
Let SDN Be Your Eyes: Secure Forensics in Data Center Networks
让 SDN 成为您的眼睛:数据中心网络中的安全取证
- DOI:
10.14722/sent.2014.23002 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Adam Bates;Kevin R. B. Butler;Andreas Haeberlen;M. Sherr;Wenchao Zhou - 通讯作者:
Wenchao Zhou
Entity C WasGeneratedBy Entity A Entity B Activity Used Used WasControlledByAgent
实体 C WasGenerateBy 实体 A 实体 B 使用的活动 WasControlledByAgent
- DOI:
- 发表时间:
2024-09-13 - 期刊:
- 影响因子:4.6
- 作者:
Adam Bates - 通讯作者:
Adam Bates
Adam Bates的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Bates', 18)}}的其他基金
SaTC: CORE: Medium: Principled Foundations for the Design and Evaluation of Graph-Based Host Intrusion Detection Systems
SaTC:核心:中:基于图的主机入侵检测系统的设计和评估的原则基础
- 批准号:
2055127 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Scalable Information Flow Monitoring and Enforcement through Data Provenance Unification
职业:通过数据来源统一进行可扩展的信息流监控和执行
- 批准号:
1750024 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CRII: SaTC: Transparent Capture and Aggregation of Secure Data Provenance for Smart Devices
CRII:SaTC:智能设备安全数据来源的透明捕获和聚合
- 批准号:
1657534 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
植物非编码RNA的潜在翻译产物及其调控网络研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
以翻译起始因子eIF3为靶点系统鉴定与验证食管癌中具有潜在编码功能的非编码RNA
- 批准号:81672459
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
潜在抑癌基因eIF4E3二重调控Snail/E-cad轴的翻译表达抑制宫颈癌EMT和侵袭转移
- 批准号:81572566
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
基于潜在语义对偶空间的新词翻译自动识别方法研究
- 批准号:61462045
- 批准年份:2014
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
青蒿素潜在靶标蛋白——TCTP过表达及基因敲除的研究
- 批准号:30271536
- 批准年份:2002
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation potential of Advanced Material Composites for Electromagnetic Interference Shielding
I-Corps:用于电磁干扰屏蔽的先进复合材料的转化潜力
- 批准号:
2403871 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Electrochemical Gold Recovery from Electronic Waste
I-Corps:从电子废物中电化学回收黄金的转化潜力
- 批准号:
2412557 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Bidirectional Neural Communication for Extended Reality Technologies
I-Corps:双向神经通信在扩展现实技术中的转化潜力
- 批准号:
2419142 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
- 批准号:
2421022 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Minimally Invasive Continuum Surgical Robot for the Eye/Ear
I-Corps:眼/耳微创连续手术机器人的翻译潜力
- 批准号:
2420989 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant