Design of Heteroanionic Materials
杂阴离子材料的设计
基本信息
- 批准号:2413680
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYMaterials containing transition metals and oxygen are used in many different technologies because of their useful properties, ranging from materials that can change their electrical polarization (ferroelectricity) to materials that can conduct electricity with no resistance at high temperatures (high-temperature superconductivity). These unique properties arise from the polarizable oxide ions. An important national priority is accelerating the discovery of new compounds, especially those with more than one type of anion instead of multiple cations. These “multi-anion” or heteroanionic materials, in which abundant elements like nitrogen or fluorine substitute for some of the oxygen ions, can enable superior functionality that is difficult to achieve in simpler oxide materials. To that end, this award supports research that will provide new knowledge about how the atomic scale structures of these materials govern their macroscopic properties. The project will establish design approaches that account for strategies to control the ordering of the different anion types. This will guide the choice of which chemical elements and atomic arrangements to use to obtain desired electronic, magnetic, and optical properties crucial for advancing current and future technologies.Additionally, this award supports teaching and training students at multiple levels. The capabilities for new material discovery will be integrated into curricula to broaden participation of underrepresented students in STEM fields. The principal investigator and group members will participate in public outreach events. Undergraduate and graduate students will also gain interdisciplinary training and experiential opportunities, contributing to the development of a skilled scientific workforce. The PI will develop accessible educational materials, including low-cost high-fidelity 3D printed models to impart critical skills and improve equity for high-school students. These concerted efforts will empower students, teachers, and workers with proficiencies needed for high-tech globally competitive careers.TECHNICAL SUMMARYHeteroanionic materials, in which one uses anion substitution of inherently earth-abundant elements (N, F, etc.) into oxides, enable the design of superior functionality that remains elusive in chemically simpler homoanionic compounds. Structure-property relationships, however, are poorly developed within this nascent field, intensified by a minimal understanding of anion order-disorder effects on physical properties. The project goals are to (1) employ a heteroanionic materials design scheme to understand the interplay among local and extended crystal structure, anion order, and electronic and magnetic responses in new regimes; and to (2) advance new heteroanionic materials exhibiting cooperative phenomena superior to those found in currently available homoanionic materials. This project will pursue design and discovery using a computational strategy, which integrates phenomenological modeling, tight-binding models, ab initio simulations, and symmetry analysis with state-of-the-art electronic structure methods to build both descriptive and predictive design models. The project also leverages substantial collaborative experimentation, focusing on synthesis and structure-property characterization on predicted compounds, guided by first-principles stability and synthesizability assessments. The PI has ongoing collaborations with leading experts in multianion synthesis and characterization; understanding derived here will stimulate experimental methods and vice versa. Success in the project will benefit society by advancing a scientific framework for tuning functionality through multiple sustainable anions. These insights may contribute instrumental in the development of electrical, optical, magnetic, and quantum components for microelectronics, catering to diverse energy-efficient computing, quantum information technologies, and communication systems that serve as major drivers of U.S. economic growth and leadership.This project synergistically integrates research and education to broaden participation of underrepresented groups in STEM fields. It develops innovative undergraduate and graduate curricula incorporating the project’s cutting-edge materials discovery capabilities. By participating directly, students receive hands-on, interdisciplinary training. Additionally, the PI and their team will create accessible, low-cost educational tools and 3D printed modeling kits aligned with Next Generation Science Standards. These resources will help underprivileged high school students build essential STEM competencies. Through this multifaceted approach, the project aims to empower and equip a diverse new generation of students, teachers, and workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要含有过渡金属和氧的材料因其有用的特性而被用于许多不同的技术中,从可以改变其电极化的材料(铁电性)到可以在高温下无电阻导电的材料(高温超导性)。这些独特的性质源于可极化的氧化物离子,国家的一个重要优先事项是加速新化合物的发现,特别是那些具有不止一种阴离子而不是多种阳离子的化合物。 “多阴离子”或杂阴离子材料,其中丰富的元素(如氮或氟)取代了一些氧离子,可以实现较简单的氧化物材料难以实现的卓越功能。为此,该奖项支持将提供的研究。该项目将建立关于这些材料的原子尺度结构如何控制其宏观特性的新知识,以解释控制不同阴离子类型排序的策略,这将指导选择使用哪些化学元素和原子排列。以获得所需的电子,磁性和光学特性对于推进当前和未来的技术至关重要。此外,该奖项将支持多层次的教学和培训学生,将新材料发现的能力纳入课程中,以扩大 STEM 领域代表性不足的学生的参与。课题组成员将参加公共推广活动。本科生和研究生还将获得跨学科培训和体验机会,为培养熟练的科学劳动力做出贡献。PI 将开发易于使用的教育材料,包括低成本高保真 3D 打印材料。模型到传授关键技能并提高高中生的公平性。这些共同努力将使学生、教师和工人具备高科技全球竞争性职业所需的技能。技术摘要杂阴离子材料,其中使用地球固有丰富元素的阴离子替代(N、F等)转化为氧化物,使得能够设计出在化学上更简单的均阴离子化合物中仍然难以捉摸的高级功能,然而,在这种新生的结构中,结构-性能关系的发展很差。该项目的目标是(1)采用杂阴离子材料设计方案来了解局部和扩展晶体结构、阴离子有序以及电子和磁响应之间的相互作用。在新的体系中;(2)推进新的杂阴离子材料,其表现出优于目前可用的同阴离子材料的合作现象。该项目将使用计算策略进行设计和发现,该策略集成了现象学建模、紧束缚模型、ab。该项目还利用大量协作实验,重点关注预测化合物的合成和结构性能表征,并采用最先进的电子结构方法进行初始模拟和对称分析。 PI 与多阴离子合成和表征方面的领先专家持续合作;此处得出的理解将刺激实验方法,反之亦然,该项目的成功将通过推进通过多种方式调整功能的科学框架来造福社会。这些见解可能有助于开发微电子学的电、光、磁和量子元件,满足作为美国经济增长和领导地位的主要驱动力的各种节能计算、量子信息技术和通信系统的需求。该项目将研究和教育相结合,以扩大 STEM 领域代表性不足的群体的参与。它开发了创新的本科生和研究生课程,融合了该项目的尖端材料发现能力。此外,PI 及其团队将创建符合下一代科学标准的易于使用、低成本的教育工具和 3D 打印建模套件,这些资源将帮助贫困高中生通过这种多方面的方法培养基本的 STEM 能力。该项目旨在为多元化的新一代学生、教师和工人提供支持和装备。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Rondinelli其他文献
Microscopic interactions governing phase matchability in nonlinear optical materials
- DOI:
10.1039/c6tc01633b - 发表时间:
2016-05 - 期刊:
- 影响因子:6.4
- 作者:
Antonio Cammarata;James Rondinelli - 通讯作者:
James Rondinelli
James Rondinelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Rondinelli', 18)}}的其他基金
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
- 批准号:
2324173 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
- 批准号:
2104397 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
- 批准号:
2104397 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
- 批准号:
2011208 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
- 批准号:
1729303 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
- 批准号:
1454688 - 财政年份:2015
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
相似国自然基金
设计合成柔性阴离子杂化孔材料用于二氧化碳捕获
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阴离子硼簇杂化柱笼型多级孔材料的制备及乙炔纯化性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型阴离子-π光致变色磷光开关杂化材料的合成与性能调控
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
新型阴离子框架多孔材料的构筑和烯烃纯化性能的研究
- 批准号:51803179
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
笼状无机/有机杂化阴离子的导向功能化及其应用
- 批准号:21472166
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
DGECR-2022-00014 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Discovery Launch Supplement
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
DGECR-2022-00014 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Discovery Launch Supplement
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
RGPIN-2022-04779 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
RGPIN-2022-04779 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
- 批准号:
2011208 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant