Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film

合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示

基本信息

  • 批准号:
    2104397
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Modern electronics are based on moving electrons through nanoscale transistors made of semiconductors such as silicon. The exponential growth in computing power has been realized by shrinking the size of transistors and increasing their density. As the dimensions of transistors approach atomic scales, further miniaturization is not possible. An alternative route to computing and information processing exploits spin, an intrinsic property of elementary particles. Spintronics combines electronics with spin, allowing for devices for information processing and storage that have superior energy efficiency and reduced heat-generation. The limiting feature for the field remains transporting spins across nanoscale dimensions in magnetic materials without losing the stored information. This project exploits a relativistic quantum mechanical effect – spin-orbit interaction – along with crystalline symmetries to protect the state of the spin as it travels in non-magnetic materials. The research team will combine experimental work with simulations to realize a new class of thin film oxide materials for spintronics. Teaching and training of students at multiple levels is interwoven throughout the project. The project will broaden STEM participation by underrepresented students through public outreach events, curriculum development, and recruiting students to participate in interdisciplinary experimental research. The educational impact extends to high-school teachers, who will be recruited to participate in research and develop materials physics modules for their classrooms. These efforts will impact the next-generation workforce by endowing students with the problem solving skills needed for future careers in STEM.The desire to identify beyond Moore’s Law devices and technologies has driven increasing attention on a range of alternative computing devices, including using the spin rather than the charge of an electron. The limiting feature for the field of spin-orbit-based electronics is the difficulty in attaining both long-lived and fully controllable spins from conventional semiconductor and magnetic materials. The goal of this project is to design, discover, and demonstrate ferroelectric oxides embodying a symmetry-protected persistent spin texture, which permits information encoded in the spins to be robust to corruption as they propagate. Unique to this project is the use of atomic topology to achieve the novel spin textures in bulk materials with spin-orbit interactions, rather than by delicately balancing multiple, hard to control, interactions through conventional quantum-well structures. The project couples theory, simulation, and comprehensive experimentation with sophisticated thin film oxide growth methods to develop new theories and models for spin textures, identify and synthesize novel ferroelectric oxides exhibiting symmetry-determined spin textures, and explore electric-field tunability of the spin textures. Outcomes of the project include new descriptive and predictive theories for spin textures in complex materials, realization of novel complex transition metal oxide ferroelectrics, and demonstration of spin-based devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电子学基于通过由硅等半导体制成的纳米级晶体管移动电子,通过缩小晶体管的尺寸并增加其密度来实现计算能力的指数级增长。随着晶体管的尺寸接近原子尺度,进一步的小型化已不再可能。计算和信息处理的另一种途径是利用自旋,这是基本粒子的一种固有特性,将电子学与自旋相结合,使信息处理和存储设备具有卓越的能源效率和减少的生热场。该项目利用相对论量子力学效应(自旋轨道相互作用)以及晶体对称性来保护自旋在非磁性材料中传播时的状态。研究团队将实验工作与模拟相结合,以实现用于自旋电子学的新型薄膜氧化物材料,该项目将通过多层次的学生教学和培训来扩大 STEM 的参与。公共宣传活动、课程开发以及招募学生参与跨学科实验研究的教育影响将延伸到高中教师,他们将被招募来参与课堂材料物理模块的研究和开发,这些努力将影响下一步。 - 通过赋予学生未来 STEM 职业所需的解决问题的技能来培养劳动力。对超越摩尔定律的设备和技术的渴望促使人们越来越关注一系列替代计算设备,包括使用自旋而不是充电的计算设备电子领域的限制特征。基于自旋轨道的电子学的难点是从传统半导体和磁性材料获得长寿命和完全可控的自旋,该项目的目标是设计、发现和演示体现对称性保护的持久自旋纹理的铁电氧化物,这使得自旋中编码的信息在传播时具有鲁棒性,该项目的独特之处在于使用原子拓扑在具有自旋轨道相互作用的散装材料中实现新颖的自旋纹理。通过传统量子阱结构微妙地平衡多种难以控制的相互作用,该项目将理论、模拟和综合实验与复杂的薄膜氧化物生长方法结合起来,开发自旋纹理的新理论和模型,识别和合成新型铁电氧化物。展示对称性决定的自旋纹理,并探索自旋纹理的电场可调谐性。该项目的成果包括复杂材料中自旋纹理的新描述和预测理论,以及新型复杂过渡金属氧化物的实现。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accidental persistent spin textures in the proustite mineral family
普鲁斯特矿物家族中意外的持续旋转纹理
  • DOI:
    10.1103/physrevb.107.035154
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Koyama, Sean;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
Strain engineering a persistent spin helix with infinite spin lifetime
应变工程具有无限旋转寿命的持久旋转螺旋
  • DOI:
    10.1103/physrevb.107.035155
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xuezeng Lu;J. Rondinelli
  • 通讯作者:
    J. Rondinelli
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

Microscopic interactions governing phase matchability in nonlinear optical materials
  • DOI:
    10.1039/c6tc01633b
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Antonio Cammarata;James Rondinelli
  • 通讯作者:
    James Rondinelli

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Design of Heteroanionic Materials
杂阴离子材料的设计
  • 批准号:
    2413680
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324173
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Structure and Function of Heteroanionic Materials
杂阴离子材料的结构与功能
  • 批准号:
    2011208
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729303
  • 财政年份:
    2017
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
  • 批准号:
    52371012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向人机交互的磁流变柔顺执行器优化设计方法与磁滞补偿控制研究
  • 批准号:
    52305064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
防/除海洋生物粘附高耐久涂层的仿生设计和制造研究
  • 批准号:
    52375296
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
碳基电磁屏蔽复合材料的双层结构设计及其吸收行为研究
  • 批准号:
    52302364
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非刚性折叠超材料的设计理论和力学性能研究
  • 批准号:
    52373293
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348642
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了