Structure and Function of Heteroanionic Materials

杂阴离子材料的结构与功能

基本信息

  • 批准号:
    2011208
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYTwenty-first century microelectronic and battery technologies rely on components consisting of transition metal oxides that can accommodate reversible changes in the distribution of their electrons. This award supports theoretical and computational research on the fundamental science of heteroanionic materials, which are compounds consisting of more than one anion beyond oxygen such as oxynitrides, oxyfluorides, and oxysulfides. These compounds benefit from the stability of oxide materials, but have the added advantage of tunable electronic, magnetic, and topological properties owing to the additional secondary anion, which allows for greater control over the electron distribution.The project goals are to design, discover, and control the properties of heteroanionic materials displaying ferroelectricity, metal-insulator transitions, and topological band structures by establishing links between crystal structure and anion chemistry, profiting from a coupling of theory, simulation, and comprehensive experimentation. The project utilizes quantum-mechanical based calculations to establish model frameworks and knowledge that are both descriptive and predictive. These models and approaches may be expanded to materials beyond heteroanionic materials, enabling an unprecedented expansion of compounds with varying electronic functions for future technologies.The teaching and training of students and the discovery capabilities of the project are also interwoven and aimed at broadening participation of underrepresented students in Science Technology Engineering and Mathematics disciplines through public outreach events, through undergraduate and graduate curriculum development, and by involving students with experiential and interdisciplinary training. The educational impact extends to high-school students by developing materials physics/engineering modules that meet Next Generation Science Standards in concert with high school teachers.TECHNICAL SUMMARYComplex transition metal oxides are utilized in a variety of technologies owing to their properties ranging from ferroelectricity to high-temperature superconductivity supported by polarizable oxide anions. The design, discovery, and control of new transition metal compounds, particularly those with multiple anions (heteroanionic materials) rather than multiple cations (homoanionic oxides with a single anion), with novel properties and superior performance are crucial to the continued development of present and future technologies. This award supports theoretical and computational research on the fundamental science of heteroanionic materials such as oxynitrides, oxyfluorides, and oxysulfides.The project goals are to implement and extend a heteroanionic materials design scheme for understanding the complex interplay among atomic structure, anion order, and band structure on novel electronic and quantum states and to advance new heteroanionic materials exhibiting superior functionalities and/or responses not found in homoanionic materials. The project utilizes a computational strategy, which integrates group theoretical techniques, derivative-structure tools, and density functional theory, to understand the electronic and optical properties of oxynitrides, oxyfluorides, and oxysulfides within three thrusts focused on (i) geometric and chemical control of noncentrosymmetry for acentric function; (ii) probing metal-insulator transition mechanisms for materials discovery; and (iii) novel routes to anion-ordered topological semimetals. The project will deliver new knowledge to facilitate the selection and design of materials with tunable electronic states derived from multiple anions. It benefits society by advancing the repertoire of structure-based design strategies to control electronic properties, which could lead to discovery of reconfigurable materials for low-power and brain-inspired microelectronics, transparent optoelectronics, and quantum information systems. In addition, educational goals of the project include the teaching and training of students at multiple levels and broadening STEM participation by underrepresented students. These goals extend to high-school students by developing materials physics/engineering modules in concert with high school teachers that meet Next Generation Science Standards. These efforts will impact the next-generation workforce by endowing students and teachers problem-solving skills to be success in globally competitive careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要二十一世纪的微电子和电池技术依赖于由过渡金属氧化物组成的组件,这些组件可以适应电子分布的可逆变化。该奖项支持杂阴离子材料基础科学的理论和计算研究,杂阴离子材料是由氧以外的一种以上阴离子组成的化合物,如氮氧化物、氟氧化物和硫氧化物。这些化合物受益于氧化物材料的稳定性,但由于额外的二次阴离子,还具有可调节的电子、磁性和拓扑特性的额外优势,从而可以更好地控制电子分布。该项目的目标是设计、发现、通过理论、模拟和综合实验的结合,建立晶体结构和阴离子化学之间的联系,控制显示铁电性、金属-绝缘体转变和拓扑能带结构的杂阴离子材料的特性。该项目利用基于量子力学的计算来建立具有描述性和预测性的模型框架和知识。这些模型和方法可以扩展到杂阴离子材料以外的材料,从而使具有不同电子功能的化合物在未来技术中得到前所未有的扩展。学生的教学和培训以及项目的发现能力也相互交织,旨在扩大代表性不足的人的参与通过公共宣传活动、本科生和研究生课程开发以及让学生参与体验式和跨学科培训,吸引科学技术、工程和数学学科的学生。通过与高中教师合作开发符合下一代科学标准的材料物理/工程模块,教育影响延伸到高中生。技术摘要复杂的过渡金属氧化物由于其从铁电性到高电性的特性而被用于各种技术中。 -由可极化氧化物阴离子支持的温度超导性。新型过渡金属化合物的设计、发现和控制,特别是那些具有多种阴离子(杂阴离子材料)而不是多种阳离子(具有单一阴离子的同阴离子氧化物)的化合物,具有新颖的性质和优越的性能,对于当前和未来的持续发展至关重要。未来的技术。该奖项支持杂阴离子材料(例如氮氧化物、氟氧化物和硫氧化物)的基础科学的理论和计算研究。该项目的目标是实施和扩展杂阴离子材料设计方案,以理解原子结构、阴离子顺序和能带之间的复杂相互作用结构新颖的电子和量子态,并推进新的杂阴离子材料,表现出同阴离子材料中没有的卓越功能和/或响应。该项目利用计算策略,集成了群理论技术、导数结构工具和密度泛函理论,以了解氮氧化物、氟氧化物和硫氧化物的电子和光学性质,重点关注三个重点:(i)几何和化学控制无心函数的非中心对称性; (ii) 探索金属-绝缘体转变机制以发现材料; (iii) 阴离子有序拓扑半金属的新途径。该项目将提供新知识,以促进具有源自多种阴离子的可调电子态的材料的选择和设计。它通过推进基于结构的设计策略来控制电子特性,从而造福社会,这可能会导致低功耗和类脑微电子学、透明光电子学和量子信息系统的可重构材料的发现。此外,该项目的教育目标包括对学生进行多层次的教学和培训,以及扩大代表性不足的学生对 STEM 的参与。通过与符合下一代科学标准的高中教师合作开发材料物理/工程模块,这些目标扩展到高中生。这些努力将赋予学生和教师解决问题的能力,从而在全球竞争性职业中取得成功,从而影响下一代劳动力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strain-Induced Magnetic Transitions in SrMO 2.5 (M = Mn, Fe) Thin Films with Ordered Oxygen Vacancies
具有有序氧空位的 SrMO 2.5 (M = Mn, Fe) 薄膜中的应变诱导磁转变
  • DOI:
    10.1021/acs.inorgchem.1c01553
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shin, Yongjin;Rondinelli, James M.
  • 通讯作者:
    Rondinelli, James M.
Strain-Induced Anion-Site Occupancy in Perovskite Oxyfluoride Films
钙钛矿氟氧化物薄膜中应变诱导的阴离子位点占据
  • DOI:
    10.1021/acs.chemmater.0c04793
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wang, Jiayi;Shin, Yongjin;Paudel, Jay R.;Grassi, Joseph D.;Sah, Raj K.;Yang, Weibing;Karapetrova, Evguenia;Zaidan, Abdulhadi;Strocov, Vladimir N.;Klewe, Christoph;et al
  • 通讯作者:
    et al
From Heterostructures to Solid‐Solutions: Structural Tunability in Mixed Halide Perovskites
从异质结构到固体解决方案:混合卤化物钙钛矿的结构可调性
  • DOI:
    10.1002/adma.202205923
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Shin, Donghoon;Lai, Minliang;Shin, Yongjin;Du, Jingshan S.;Jibril, Liban;Rondinelli, James M.;Mirkin, Chad A.
  • 通讯作者:
    Mirkin, Chad A.
Synthesis of the Candidate Topological Compound Ni 3 Pb 2
候选拓扑化合物Ni 3 Pb 2 的合成
  • DOI:
    10.1021/jacs.2c03485
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Tamerius, Alexandra D.;Altman, Alison B.;Waters, Michael J.;Riesel, Eric A.;Malliakas, Christos D.;Whitaker, Matthew L.;Yu, Tony;Fabbris, Gilberto;Meng, Yue;Haskel, Daniel;et al
  • 通讯作者:
    et al
Ba 2 MAsQ 5 (Q = S and Se) Family of Polar Structures with Large Second Harmonic Generation and Phase Matchability
Ba 2 MAsQ 5 (Q = S 和 Se) 具有大二次谐波产生和相位匹配性的极性结构族
  • DOI:
    10.1021/acs.chemmater.2c00962
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Iyer, Abishek K.;Cho, Jeong Bin;Waters, Michael J.;Cho, Jun Sang;Oxley, Benjamin M.;Rondinelli, James M.;Jang, Joon I.;Kanatzidis, Mercouri G.
  • 通讯作者:
    Kanatzidis, Mercouri G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rondinelli其他文献

Microscopic interactions governing phase matchability in nonlinear optical materials
  • DOI:
    10.1039/c6tc01633b
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Antonio Cammarata;James Rondinelli
  • 通讯作者:
    James Rondinelli

James Rondinelli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rondinelli', 18)}}的其他基金

Design of Heteroanionic Materials
杂阴离子材料的设计
  • 批准号:
    2413680
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Accelerated Design, Discovery, and Deployment of Electronic Phase Transitions (ADEPT)
合作研究:DMREF:电子相变的加速设计、发现和部署 (ADEPT)
  • 批准号:
    2324173
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Demonstration of Persistent Spin Textures in Ferroelectric Oxide Thin Film
合作研究:铁电氧化物薄膜中持久自旋织构的设计和演示
  • 批准号:
    2104397
  • 财政年份:
    2021
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Structure Genome of Metal-Insulator Transitions
DMREF:合作研究:金属-绝缘体转变的结构基因组
  • 批准号:
    1729303
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
CAREER: Ligand Engineering of Structure and Electronic Function in Complex Metal Oxyfluorides
职业:复杂金属氟氧化物结构和电子功能的配体工程
  • 批准号:
    1454688
  • 财政年份:
    2015
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant

相似国自然基金

均三嗪基三咪唑阳离子簇功能化降冰片烯嵌段共聚物及其杂化碱性阴离子交换膜的构筑与构-效关系研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
笼状无机/有机杂化阴离子的导向功能化及其应用
  • 批准号:
    21472166
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
手性阴离子功能化吡啶并三唑卡宾的合成与催化性能研究
  • 批准号:
    21302081
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
功能有机-无机杂化材料的制备与性能研究
  • 批准号:
    20844001
  • 批准年份:
    2008
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目
多酸基纳米孔无机-有机杂化功能配位聚合物的制备与性质
  • 批准号:
    20871022
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Projects
Hedgehog signalling in T-cell differentiation and function
T 细胞分化和功能中的 Hedgehog 信号传导
  • 批准号:
    BB/Y003454/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
Mechanisms underlying homeotic function across developmental transitions
发育转变过程中同源异型功能的潜在机制
  • 批准号:
    BB/Y006860/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
Multi-platform pipeline for engineering human knee joint function
用于工程人体膝关节功能的多平台管道
  • 批准号:
    EP/X039870/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Research Grant
CAREER: Carotenoid coloration in an evolutionary radiation: Connecting molecular function, fitness, and diet ecology in wood warblers
职业:进化辐射中的类胡萝卜素着色:连接林莺的分子功能、健康和饮食生态学
  • 批准号:
    2337828
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了