HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping

HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析

基本信息

  • 批准号:
    2401748
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder affecting one out of 54 children in the US. ASD is arguably one of the greatest public health challenges of our time, which has imposed a significant impact on children and their families, not to mention the burden on the current healthcare and educational systems. Despite decades of research, many fundamental issues related to ASD remain from early diagnosis to personalized intervention. The heterogeneity of ASD has contributed significantly to the difficulty in identifying the specific traits associated with this disorder (i.e., phenotyping), genetically or behaviorally. In addition to apparently increasing prevalence and unknown etiology, modeling the ASD phenotype has remained a long-standing open problem in autism research. An improved understanding of ASD phenotypes can shed novel insight to both more accurate diagnosis and more effective intervention of ASD. This project aims to understand ASD biomarkers based on behavioral measurement and sensor-gathered data, including neural recording, eye tracking, video/audio capture, and other sensor data. Through multi-disciplinary collaboration, this project will lead to transformative advances in behavioral science and data-driven computational neuroscience for ASD phenotyping. Improved and earlier diagnosis can substantially improve quality of life of ASD individuals and their communities. This project will provide an excellent platform to train both graduate and undergraduate students at the intersection of neuroscience and computer science.This project will address the problem of ASD modeling by taking a multimodal data-driven approach integrating behavior imaging data (eye-tracking, audio/video) with neuroimaging data such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG)/ magnetoencephalography (MEG). The research team will carry out multimodal data fusion to extract ASD-relevant biomarkers without feature engineering, and data-driven modeling to obtain an understanding of the neural underpinnings of ASD, especially in the relationship between behavioral and sensor-oriented signals. This multimodal data-based modeling will combine complementary information about salient ASD biomarkers, such as dynamic functional connectivity, across different modalities. To avoid heuristics-based feature engineering for ASD phenotyping, the researchers will use two stream-based deep learning techniques along with XAI explainable AI (Artificial Intelligence). XAI will provide the interpretations for the decisions made by the deep learning algorithms to identify the traits associated with ASD. In addition to ASD diagnosing, multimodal neuroimaging will lead to investigations into the richness and complexity of ASD, referred to here as ASD phenotyping.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自闭症谱系障碍 (ASD) 是一种复杂的神经发育障碍,美国每 54 名儿童中就有一人患有这种疾病。自闭症谱系障碍可以说是我们这个时代最大的公共卫生挑战之一,它对儿童及其家庭产生了重大影响,更不用说给当前的医疗保健和教育系统带来负担了。尽管经过数十年的研究,从早期诊断到个性化干预,与 ASD 相关的许多基本问题仍然存在。自闭症谱系障碍的异质性极大地增加了从遗传或行为角度识别与该疾病相关的特定特征(即表型)的难度。除了明显增加的患病率和未知的病因之外,对自闭症谱系障碍表型进行建模仍然是自闭症研究中长期存在的一个悬而未决的问题。加深对 ASD 表型的了解可以为更准确的 ASD 诊断和更有效的干预提供新的见解。该项目旨在基于行为测量和传感器收集的数据(包括神经记录、眼球追踪、视频/音频捕获和其他传感器数据)了解 ASD 生物标志物。通过多学科合作,该项目将推动行为科学和数据驱动的计算神经科学在 ASD 表型分析方面取得变革性进展。改进和早期诊断可以大大提高自闭症谱系障碍个人及其社区的生活质量。该项目将为培训神经科学和计算机科学交叉领域的研究生和本科生提供一个优秀的平台。该项目将通过采用集成行为成像数据(眼动追踪、音频数据)的多模态数据驱动方法来解决 ASD 建模问题。 /视频)以及神经影像数据,例如功能性磁共振成像(fMRI)、脑电图(EEG)/脑磁图(MEG)。研究团队将进行多模态数据融合,以在不进行特征工程的情况下提取 ASD 相关生物标志物,并进行数据驱动建模,以了解 ASD 的神经基础,特别是行为和面向传感器的信号之间的关系。这种基于多模式数据的建模将结合有关显着 ASD 生物标志物的补充信息,例如跨不同模式的动态功能连接。为了避免 ASD 表型分析中基于启发式的特征工程,研究人员将使用两种基于流的深度学习技术以及 XAI 可解释的 AI(人工智能)。 XAI 将为深度学习算法做出的决策提供解释,以识别与 ASD 相关的特征。除了 ASD 诊断之外,多模式神经影像学还将促进对 ASD 丰富性和复杂性的研究,此处称为 ASD 表型分析。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Li其他文献

Photonic Firewall Placement for Static Services in All-Optical Networks
全光网络中静态服务的光子防火墙布局
Psychological symptoms among frontline healthcare workers during COVID-19 outbreak in Wuhan
武汉 COVID-19 爆发期间一线医护人员的心理症状
  • DOI:
    10.1016/j.genhosppsych.2020.03.011
  • 发表时间:
    2020-04-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Jiang Du;Lu Dong;Tao Wang;Chenxin Yuan;Rao Fu;Lei Zhang;Bo Liu;M. Zhang;Y.;Jiawen Qin;J. Bouey;Min Zhao;Xin Li
  • 通讯作者:
    Xin Li
μLED-Based Single-Wavelength Bi-directional POF Link With 10 Gb/s Aggregate Data Rate
基于 μLED 的单波长双向 POF 链路,聚合数据速率为 10 Gb/s
  • DOI:
    10.1109/jlt.2015.2443984
  • 发表时间:
    2015-05-26
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xin Li;N. Bamiedakis;Jinlong Wei;J. McKendry;E. Xie;R. Ferreira;E. Gu;M. Dawson;R. Penty;I. White
  • 通讯作者:
    I. White
Superposition Effect of Overvoltage for Vacuum Circuit Breakers Simultaneously Switching Shunt Reactor Banks in Offshore Wind Farms
海上风电场真空断路器同时投切并联电抗器组过电压叠加效应
Macropinocytosis: mechanism and targeted therapy in cancers.
巨胞饮作用:癌症的机制和靶向治疗。
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Xiao;Jingying Li;K. Huang;Xin Li;Yaping Xiong;Miao;Lei Wu;Wei Kuang;Shi;Lei Wu;Xin;Hua Guo
  • 通讯作者:
    Hua Guo

Xin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Li', 18)}}的其他基金

CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2318758
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2348046
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER:Single-neuron mechanisms of social attention in humans
职业:人类社会注意力的单神经元机制
  • 批准号:
    2401398
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
  • 批准号:
    2114644
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Fundamental Questions in Communication and Computation Regarding Edit Type String Measures
AF:小:有关编辑类型字符串测量的通信和计算的基本问题
  • 批准号:
    2127575
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER:Single-neuron mechanisms of social attention in humans
职业:人类社会注意力的单神经元机制
  • 批准号:
    1945230
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Pseudorandom Objects and their Applications in Computer Science
职业:伪随机对象及其在计算机科学中的应用
  • 批准号:
    1845349
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Small: Re-thinking Polynomial Programming: Efficient Design and Optimization of Resilient Analog/RF Integrated Systems by Convexification
SHF:小:重新思考多项式编程:通过凸化实现弹性模拟/射频集成系统的高效设计和优化
  • 批准号:
    1720569
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Randomness in Computation - Old Problems and New Directions
AF:小:计算中的随机性 - 老问题和新方向
  • 批准号:
    1617713
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Re-thinking Polynomial Programming: Efficient Design and Optimization of Resilient Analog/RF Integrated Systems by Convexification
SHF:小:重新思考多项式编程:通过凸化实现弹性模拟/射频集成系统的高效设计和优化
  • 批准号:
    1604150
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SaTC: CORE: Small: Toward Privacy Equity through Contextual Understanding of Self-Disclosure
SaTC:核心:小:通过自我披露的情境理解实现隐私公平
  • 批准号:
    2247723
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
  • 批准号:
    2306278
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: RUI: Toward High-Performance Block Krylov Subspace Algorithms for Solving Large-Scale Linear Systems
AF:小:RUI:用于求解大规模线性系统的高性能块 Krylov 子空间算法
  • 批准号:
    2327619
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Toward Clinical Trial: AXL-STAT3 Targeting of Lung Tumor Microenvironments
走向临床试验:AXL-STAT3 靶向肺肿瘤微环境
  • 批准号:
    10660429
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了