CAREER: Pseudorandom Objects and their Applications in Computer Science

职业:伪随机对象及其在计算机科学中的应用

基本信息

  • 批准号:
    1845349
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

One of the most successful paradigms in computer science since the 1970s is the use of random bits (coin flips) in computation, which can be demonstrated from several broad aspects. For example, many simple randomized algorithms perform better than sophisticated deterministic algorithms, and random bits are widely used in modern cryptography to ensure security. Moreover, in certain applications regarding designing combinatorial objects (such as highly connected sparse networks), simply choosing a random object often achieves the best parameters. However, the use of random bits comes at a price: in practice high quality random bits are often too costly to obtain, and many applications such as the example of designing a sparse network require deterministic constructions rather than randomized ones. The overarching goal of this project is to understand the fundamental question of when and how one can replace the use of random bits or randomized objects by pseudorandom objects, which are objects that are deterministically constructed but behave like random ones. This will lead to a deeper understanding of the nature of random bits in computation, as well as more efficient and secure solutions to important questions both in theory and in practice. Examples of benefits include faster algorithms for handling large data sets, more robust networks, and more reliable communications in hostile environments. The project also involves plans for mentoring PhD students, integration of the research topics into courses and books that appeal to students from a variety of different backgrounds, and support of under-represented groups of students in computer science.The project contains three sets of specific goals. The first set of goals seeks to understand how to reduce the quantity or quality of random bits in computation generally, using two kinds of pseudorandom objects known as pseudorandom generators and randomness extractors. A pseudorandom generator is a function that stretches a short random seed into a long string that looks random to certain functions, and it can be used to reduce the quantity of random bits required. A randomness extractor is a function that transforms imperfect random sources into high quality random bits. The second set of goals investigates the connections of these pseudorandom objects to computational complexity theory. Specifically, the goal is to use the random-like property of these objects to give new constructions of deterministic objects that circumvent barriers in long-standing open problems, such as the question of sequential computation versus parallel computation. The third set of goals involves development of new techniques for constructions of error-correcting codes, which can be used both to protect against various tampering attacks from adversaries, and to achieve privacy or security in cryptographic systems. The study of these topics is based on techniques from several related areas such as probability theory, information theory, cryptography, combinatorics, and harmonic analysis, and will further foster the interactions among these areas towards breakthroughs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自 20 世纪 70 年代以来计算机科学最成功的范式之一是在计算中使用随机位(硬币翻转),这可以从几个广泛的方面进行证明。例如,许多简单的随机算法比复杂的确定性算法表现更好,并且随机位广泛用于现代密码学中以确保安全性。此外,在设计组合对象(例如高度连接的稀疏网络)的某些应用中,简单地选择随机对象通常可以获得最佳参数。然而,使用随机位是有代价的:实际上,获得高质量随机位的成本往往太高,并且许多应用(例如设计稀疏网络的示例)需要确定性构造而不是随机构造。该项目的总体目标是了解何时以及如何用伪随机对象替换随机位或随机对象的基本问题,伪随机对象是确定性构造的但行为类似于随机对象的对象。这将导致人们更深入地了解计算中随机位的本质,并为理论和实践中的重要问题提供更高效、更安全的解决方案。好处的例子包括处理大型数据集的更快算法、更强大的网络以及在恶劣环境中更可靠的通信。该项目还包括指导博士生的计划、将研究主题整合到吸引不同背景的学生的课程和书籍中以及支持计算机科学领域代表性不足的学生群体。该项目包含三组具体内容目标。第一组目标旨在了解如何使用两种称为伪随机生成器和随机性提取器的伪随机对象来减少计算中随机位的数量或质量。伪随机生成器是一种将短随机种子拉伸为长字符串的函数,该长字符串对于某些函数来说看起来是随机的,并且可用于减少所需的随机位数。随机性提取器是将不完美的随机源转换为高质量随机位的功能。第二组目标研究这些伪随机对象与计算复杂性理论的联系。具体来说,目标是利用这些对象的类似随机的属性来给出确定性对象的新构造,从而绕过长期存在的开放问题中的障碍,例如顺序计算与并行计算的问题。第三组目标涉及开发构建纠错码的新技术,该技术既可用于防止对手的各种篡改攻击,又可用于实现密码系统的隐私或安全。这些主题的研究基于概率论、信息论、密码学、组合学和调和分析等多个相关领域的技术,并将进一步促进这些领域之间的相互作用以实现突破。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Linear and Affine Codes for Correcting Insertions/Deletions
用于纠正插入/删除的高效线性和仿射码
Improved Decoding of Expander Codes
改进的扩展码解码
Non-malleable Codes, Extractors and Secret Sharing for Interleaved Tampering and Composition of Tampering
用于交错篡改和篡改组合的不可延展代码、提取器和秘密共享
  • DOI:
    10.1007/978-3-030-64381-2_21
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chattopadhyay, Eshan;Li, Xin
  • 通讯作者:
    Li, Xin
Low-Degree Polynomials Extract From Local Sources
从本地来源提取低次多项式
Extractors and Secret Sharing Against Bounded Collusion Protocols
针对有限共谋协议的提取器和秘密共享
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Li其他文献

Photonic Firewall Placement for Static Services in All-Optical Networks
全光网络中静态服务的光子防火墙布局
Psychological symptoms among frontline healthcare workers during COVID-19 outbreak in Wuhan
武汉 COVID-19 爆发期间一线医护人员的心理症状
  • DOI:
    10.1016/j.genhosppsych.2020.03.011
  • 发表时间:
    2020-04-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Jiang Du;Lu Dong;Tao Wang;Chenxin Yuan;Rao Fu;Lei Zhang;Bo Liu;M. Zhang;Y.;Jiawen Qin;J. Bouey;Min Zhao;Xin Li
  • 通讯作者:
    Xin Li
μLED-Based Single-Wavelength Bi-directional POF Link With 10 Gb/s Aggregate Data Rate
基于 μLED 的单波长双向 POF 链路,聚合数据速率为 10 Gb/s
  • DOI:
    10.1109/jlt.2015.2443984
  • 发表时间:
    2015-05-26
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Xin Li;N. Bamiedakis;Jinlong Wei;J. McKendry;E. Xie;R. Ferreira;E. Gu;M. Dawson;R. Penty;I. White
  • 通讯作者:
    I. White
Superposition Effect of Overvoltage for Vacuum Circuit Breakers Simultaneously Switching Shunt Reactor Banks in Offshore Wind Farms
海上风电场真空断路器同时投切并联电抗器组过电压叠加效应
Macropinocytosis: mechanism and targeted therapy in cancers.
巨胞饮作用:癌症的机制和靶向治疗。
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Xiao;Jingying Li;K. Huang;Xin Li;Yaping Xiong;Miao;Lei Wu;Wei Kuang;Shi;Lei Wu;Xin;Hua Guo
  • 通讯作者:
    Hua Guo

Xin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Li', 18)}}的其他基金

CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2318758
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
  • 批准号:
    2348046
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER:Single-neuron mechanisms of social attention in humans
职业:人类社会注意力的单神经元机制
  • 批准号:
    2401398
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
  • 批准号:
    2401748
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
  • 批准号:
    2114644
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Fundamental Questions in Communication and Computation Regarding Edit Type String Measures
AF:小:有关编辑类型字符串测量的通信和计算的基本问题
  • 批准号:
    2127575
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER:Single-neuron mechanisms of social attention in humans
职业:人类社会注意力的单神经元机制
  • 批准号:
    1945230
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SHF: Small: Re-thinking Polynomial Programming: Efficient Design and Optimization of Resilient Analog/RF Integrated Systems by Convexification
SHF:小:重新思考多项式编程:通过凸化实现弹性模拟/射频集成系统的高效设计和优化
  • 批准号:
    1720569
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AF: Small: Randomness in Computation - Old Problems and New Directions
AF:小:计算中的随机性 - 老问题和新方向
  • 批准号:
    1617713
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: Re-thinking Polynomial Programming: Efficient Design and Optimization of Resilient Analog/RF Integrated Systems by Convexification
SHF:小:重新思考多项式编程:通过凸化实现弹性模拟/射频集成系统的高效设计和优化
  • 批准号:
    1604150
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

随机图与伪随机图上的极值问题
  • 批准号:
    12371341
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
CO2咸水层封存流体-岩石电性特征与伪随机源井地电磁法监测技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全空间伪随机张量电磁场实时监测理论与方法研究
  • 批准号:
    42230811
  • 批准年份:
    2022
  • 资助金额:
    271 万元
  • 项目类别:
    重点项目
基于伪随机编码的铁路路基雷达检测基础研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
信息安全中伪随机序列的生成和性质及应用研究
  • 批准号:
    61902304
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
  • 批准号:
    23K03033
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329939
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: RUI: Highly Nonlinear and Pseudorandom Structures for Communications and Sensing
CIF:小:RUI:用于通信和传感的高度非线性和伪随机结构
  • 批准号:
    2206454
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: RUI: Highly Nonlinear and Pseudorandom Structures for Communications and Sensing
CIF:小:RUI:用于通信和传感的高度非线性和伪随机结构
  • 批准号:
    2206454
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了