Collaborative Research: Sloshing liquid decontamination of compliant surfaces

合作研究:顺应表面的晃动液体净化

基本信息

项目摘要

The decontamination of remote surfaces is challenging, particularly when the accumulation of external matter hinders these surfaces’ dynamic function. An example of such surfaces is the small, flexible wings on flapping-wing robots that are beginning to approach the scale of natural insects. Removing liquid contaminants from these surfaces using vibration presents an opportunity for autonomous cleaning and drying. However, at these scales, the motion of the sloshing liquid contaminants and the flexible surfaces on which they rest are coupled—the deformation of one influences the other. Therefore, the principal aim of this project is to provide a deep understanding of how the motion of a surface impacts the motion and ejection of a liquid drop. This project will provide a foundation by which to adapt self-decontamination strategies to other surfaces vulnerable to droplets, such as those in food preparation and healthcare. This project also encompasses outreach activities to local high school students via science fair project mentoring and research opportunities in the PIs’ labs. The objective of this project is to reveal the physics of sloshing liquid contaminates and ejection from surfaces in which the fluid and surface motions are highly coupled. This tightly integrated experimental, theoretical, and numerical study will answer questions in highly interdependent fluid-structure interaction. This project mates two elementary systems—a cantilever and a fluid drop – to form a dynamically complex system. Driving the cantilever base causes it to bend and the drop to slosh and/or slide, and the substrate dynamically responds in turn to drop motion. High-speed videography and precisely controlled vibratory input will enable the characterization of drop motion and ejection events in which the solid substrate can exhibit a range of curvatures and accelerations throughout the vibration cycle. Conventional cantilever and elastica dynamics will be augmented with inertia-related non-conservative fluid forces to quantify dissipation, drop coherence, and fluid removal in these non-stationary processes. Numerics will permit the synthesis of coupled fluid- and solid-governing equations to determine the most effective excitation strategy for substrate decontamination. The ability to self-decontaminate adds a new dimension to the multi-functionality provided by flexible wings and will be critical to the functionality of surfaces vulnerable to chemicals, moisture, and biofilms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
远程表面的去污具有挑战性,尤其是当外部物质的积累阻碍这些表面的动态功能时。这样的表面的一个例子是在吹翼机器人上的小而柔性的翅膀开始接近自然绝缘的规模。使用振动从这些表面清除液体污染物为自主清洁和干燥提供了机会。然而,在这些尺度上,悬崖液体污染物的运动及其静止的柔性表面是耦合的 - 一种影响另一个影响另一个影响。因此,该项目的主要目的是深入了解表面运动的运动如何影响液态滴的运动和弹出。该项目将为将自我污染策略调整到容易受到液滴的其他表面(例如食品准备和医疗保健方面的液滴)的基础。该项目还通过PIS实验室中的科学博览会项目心理和研究机会,涵盖了向当地高中生的外展活动。该项目的目的是揭示从高度耦合流体和表面运动的表面的浸润液体污染物和弹出物的物理。这项紧密整合的实验,理论和数值研究将回答高度相互依存的流体结构相互作用的问题。该项目配合了两个基本系统(一个悬臂和流体滴),以形成动态复杂的系统。驾驶悬臂底座会使它弯曲,并将滴落到斜坡和/或滑梯上,并且基板依次动态地响应掉落运动。高速视频和精确控制的振动输入将使滴运动和弹射事件的表征能够在整个振动周期中执行一系列曲率和加速度。传统的悬臂和Elastica动力学将通过与惯性相关的非保守流体力进行增强,以量化这些非平稳过程中的耗散,降低相干性和流体去除。数字将允许合成耦合的流体和实体方程,以确定底物净化的最有效的令人兴奋的策略。自我污染的能力为灵活的机翼提供的多功能性增加了一个新的维度,并且对于容易受到化学物质,水分和生物膜的表面功能至关重要。该奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的影响来评估NSF的法定任务,并被视为诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Kauffman其他文献

Jeffrey Kauffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
摇摆钢桥墩震后恢复机理及韧性设计方法研究
  • 批准号:
    52308537
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柱脚抬升式摇摆钢框架整体抗震性能及设计方法研究
  • 批准号:
    52378486
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
风电机组运行状态下钢-预应力混凝土混合结构塔筒摇摆机理与抗震性能研究
  • 批准号:
    52378478
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
城市大深度竖井结构地震摇摆响应荷载传递机制及破坏机理研究
  • 批准号:
    52308477
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Standard Grant
Research on Sloshing Measures of Estimation of Overflowed Liquid and Control Method with Damping Device
溢流估算晃动措施及阻尼装置控制方法研究
  • 批准号:
    22560486
  • 财政年份:
    2010
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental and Numerical Research on Heat Transfer and Phase Change Enhanced by Sloshing
晃动强化传热与相变的实验与数值研究
  • 批准号:
    19760560
  • 财政年份:
    2007
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the input ground motion and analysis of the floating-roofed oil storage tanks
浮顶储油罐输入地震动研究及分析
  • 批准号:
    17560420
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research and development of hydro-elastic and hydrodynamic responses of ship running in rough seas
船舶在波涛汹涌的海面运行的水弹性和水动力响应研究与发展
  • 批准号:
    17206088
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了