REU Site: Quantum Machine Learning Algorithm Design and Implementation

REU 站点:量子机器学习算法设计与实现

基本信息

  • 批准号:
    2349567
  • 负责人:
  • 金额:
    $ 35.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Quantum Computing (QC) promises to accelerate information processing and solve highly complex massive data problems. This three-year REU site will recruit and train nine undergraduate students each summer and engage them in research endeavors on the design of quantum signal processing and quantum machine learning circuits and simulations. The investigators, along with a team of faculty advisors, will supervise a series of multidisciplinary research projects in quantum AI and quantum Digital Signal Processing (DSP). In addition to the planned REU projects, the investigators of this project will organize a series of industry-university collaborative training activities for the students. This REU features multidisciplinary synergies across different research labs that provide access to unique quantum simulation software, quantum physics and networking facilities, and quantum machine learning circuit design for several applications including health, sustainability, and security. Specific applications include audio recognition, image understanding, encryption and solar energy systems. The program will also include crosscutting professional development, modules and workshops in public speaking, policy, ethics, patent development and outreach. Annual REU workshops will train students to communicate with stakeholders. The investigator team will use the NSF Education and Training Application (ETAP) system for recruitment of REU student participants. Local and national evaluation units including the Center for Evaluating the Research Pipeline (CERP) will be deployed for assessments that will provide feedback for program improvement. Local site evaluators will also assess REU goals annually using feedback from student participants, academic and industry mentors, and other stakeholders. The program engages minority-serving institutions and professional student chapters to broaden participation and enhance recruitment.The REU will address STEM problems associated with quantum information processing (QIP) and specifically quantum signal processing and quantum machine learning (QML). Key research and education problems include a) understanding the theory and statistics of Quantum bits (Qubits), b) introduction to quantum noise models, c) understanding of tradeoffs between Qubit precision and quantum noise, d) skill-building with programming quantum simulations, and e) laboratory access to unique QC facilities. The faculty investigators will organize project and mentorship activities including REU student mentorship by industry partners. The objectives of the proposed site are to a) introduce students to research practices by immersing them in government and industry projects, b) engage students in quantum machine learning research, c) motivate students to pursue QIP research careers and recruit them to graduate programs, and d) provide cross-cutting skills in presentation, ethics, and standards. The REU projects are designed to introduce students to an array of quantum information processing technologies that emphasize the design of quantum simulation circuits for: AI-based signal and data classification, signal analysis synthesis using the quantum Fourier transform, quantum cloud and edge computing, quantum networking, quantum image understanding, and quantum based encryption. During the same period, projects will train REU students to understand issues dealing with quantum noise and quantum precision, quantum bit (qubit) measurement methods and theoretical aspects of superposition and entanglement. The REU will achieve social impact through several mechanisms including cross-cutting training, workshops on public speaking and ethics, dissemination of quantum project results and outreach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算(QC)有望加速信息处理并解决高度复杂的海量数据问题。这个为期三年的 REU 网站将每年夏天招收和培训 9 名本科生,让他们从事量子信号处理和量子机器学习电路和模拟设计的研究工作。研究人员与教师顾问团队将监督量子人工智能和量子数字信号处理(DSP)领域的一系列多学科研究项目。 除了计划中的REU项目外,该项目的研究者还将为学生组织一系列的产学合作培训活动。该 REU 具有跨不同研究实验室的多学科协同作用,提供独特的量子模拟软件、量子物理和网络设施以及针对健康、可持续性和安全等多种应用的量子机器学习电路设计。 具体应用包括音频识别、图像理解、加密和太阳能系统。 该计划还将包括公共演讲、政策、道德、专利开发和推广方面的跨领域专业发展、模块和研讨会。年度 REU 研讨会将培训学生与利益相关者沟通。研究团队将使用 NSF 教育和培训申请 (ETAP) 系统来招募 REU 学生参与者。 将部署包括研究管道评估中心(CERP)在内的地方和国家评估单位进行评估,为项目改进提供反馈。当地评估人员每年还将利用学生参与者、学术和行业导师以及其他利益相关者的反馈来评估 REU 目标。该计划吸引少数族裔服务机构和专业学生分会参与,以扩大参与范围并加强招聘。REU 将解决与量子信息处理 (QIP)、特别是量子信号处理和量子机器学习 (QML) 相关的 STEM 问题。关键的研究和教育问题包括 a) 了解量子位 (Qubit) 的理论和统计,b) 量子噪声模型简介,c) 了解量子位精度和量子噪声之间的权衡,d) 通过编程量子模拟进行技能建设, e) 实验室使用独特的质量控制设施。教师研究人员将组织项目和指导活动,包括行业合作伙伴对 REU 学生的指导。拟议网站的目标是 a) 通过让学生沉浸在政府和行业项目中向他们介绍研究实践,b) 让学生参与量子机器学习研究,c) 激励学生从事 QIP 研究职业并招募他们参加研究生课程, d) 提供演示、道德和标准方面的跨领域技能。 REU 项目旨在向学生介绍一系列量子信息处理技术,这些技术强调量子模拟电路的设计:基于人工智能的信号和数据分类、使用量子傅里叶变换的信号分析合成、量子云和边缘计算、量子网络、量子图像理解和基于量子的加密。同期,项目将培训 REU 学生了解量子噪声和量子精度、量子位(qubit)测量方法以及叠加和纠缠的理论方面的问题。 REU 将通过多种机制实现社会影响,包括跨领域培训、公开演讲和道德研讨会、量子项目成果的传播和推广。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Spanias其他文献

Adaptive noise cancellation using fast optimum block algorithms
使用快速最佳块算法的自适应噪声消除
Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm
  • DOI:
    10.1039/c4ja00109e
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xiangyu Bi;Sungyun Lee;James F. Ranville;Prasanna Sattigeri;Andreas Spanias;Pierre Herckes;Paul Westerhoff
  • 通讯作者:
    Paul Westerhoff
Quantum Image Fusion Methods for Remote Sensing
遥感量子图像融合方法
  • DOI:
    10.1109/aero58975.2024.10521113
  • 发表时间:
    2024-03-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leslie Miller;Glen S. Uehara;Andreas Spanias
  • 通讯作者:
    Andreas Spanias
A review of algorithms for perceptual coding of digital audio signals
数字音频信号感知编码算法综述
Hybrid Quantum-Classical Neural Network for Semantic Segmentation
用于语义分割的混合量子经典神经网络
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hwan Kim;Dr Glen Uehara;Andreas Spanias
  • 通讯作者:
    Andreas Spanias

Andreas Spanias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Spanias', 18)}}的其他基金

Quantum Machine Learning Online Materials and Software Modules for Undergraduate Education
适用于本科教育的量子机器学习在线材料和软件模块
  • 批准号:
    2215998
  • 财政年份:
    2022
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
  • 批准号:
    2019068
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Covid-19 Hotspot Network Size and Node Counting using Consensus Estimation
RAPID:协作研究:使用共识估计的 Covid-19 热点网络规模和节点计数
  • 批准号:
    2032114
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
RET Site: Sensor, Signal and Information Processing Algorithms and Software
RET 站点:传感器、信号和信息处理算法和软件
  • 批准号:
    1953745
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
IRES Track I: Sensors and Machine Learning for Solar Power Monitoring and Control
IRES Track I:用于太阳能监测和控制的传感器和机器学习
  • 批准号:
    1854273
  • 财政年份:
    2019
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Sensor, Signal and Information Processing Devices and Algorithms
REU 网站:传感器、信号和信息处理设备和算法
  • 批准号:
    1659871
  • 财政年份:
    2017
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
CPS: Synergy: Image Modeling and Machine Learning Algorithms for Utility-Scale Solar Panel Monitoring
CPS:协同:用于公用事业规模太阳能电池板监控的图像建模和机器学习算法
  • 批准号:
    1646542
  • 财政年份:
    2016
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
I/UCRC Phase II: ASU Research Site of the NSF Net-Centric and Cloud Software and Systems I/UCRC
I/UCRC 第二阶段:美国国家科学基金会 (NSF) 网络中心和云软件与系统的 ASU 研究站点 I/UCRC
  • 批准号:
    1540040
  • 财政年份:
    2016
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrated Development of Scalable Mobile Multidisciplinary Modules (SM3) for STEM Education
合作研究:STEM教育可扩展移动多学科模块(SM3)的集成开发
  • 批准号:
    1525716
  • 财政年份:
    2015
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
I/UCRC: Workshops Promoting International USA-Mexico Collaborations in Sensors and Signal Processing
I/UCRC:促进美国-墨西哥在传感器和信号处理领域国际合作的研讨会
  • 批准号:
    1550393
  • 财政年份:
    2015
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东北阜新-锦州盆地及其他地点早白垩世晚期的两栖爬行类研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
面向多地点动态集结任务的空海无人系统智能协同控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Nanophotonics, Quantum Photonics, and Vision/Biomedical Optics at the University of Rochester.
REU 站点:罗切斯特大学的纳米光子学、量子光子学和视觉/生物医学光学。
  • 批准号:
    2244031
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Applying the Tools of Physics to Explore the Macroscopic, Microscopic, and Quantum Worlds
REU 网站:应用物理工具探索宏观、微观和量子世界
  • 批准号:
    2244433
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Quantum Algorithms and Optimization (QAO)
REU 网站:量子算法和优化 (QAO)
  • 批准号:
    2244512
  • 财政年份:
    2023
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Applying the Tools of Physics to Explore the Macroscopic, Microscopic, and Quantum Worlds
REU 网站:应用物理工具探索宏观、微观和量子世界
  • 批准号:
    1950744
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
REU Site: Quantum and Materials Physics
REU 网站:量子与材料物理
  • 批准号:
    1950282
  • 财政年份:
    2020
  • 资助金额:
    $ 35.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了