Shimura Varieties, p-Adic Shtukas, and Local Systems

志村品种、p-Adic Shtukas 和本地系统

基本信息

  • 批准号:
    2100743
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The PI will conduct research in the field of arithmetic algebraic geometry. This is a subject that blends two of the oldest areas of mathematics: The geometry of shapes that can be described by the simplest equations, namely polynomials, and the study of numbers. This combination of disciplines has proved extraordinarily fruitful - having solved problems that withstood generations (such as "Fermat's last theorem"). The general field has connections with physics, and has found important applications to the construction of error correcting codes and cryptography. The PI's work mainly concentrates on the study of specific equations which describe shapes with many symmetries and on connections of the subject with certain constructions in mathematical physics. The PI plans to involve graduate students in some of the projects.The PI is working to describe integral models for Shimura varieties at primes of non-smooth reduction and study related spaces. In particular, he will continue to investigate the singularities of Shimura varieties of abelian type at such primes. He plans to characterize these integral models by using the novel theory of p-adic shtukas and, in the case of orthogonal Shimura varieties, explicitly study the local structure of their reductions. He would also like to interpret Shimura varieties as special cases of more general moduli spaces of "arithmetic shtukas" and to generalize the concept of special points of Shimura varieties to such moduli spaces. Finally, motivated by an analogy with the theory of moduli of bundles over Riemann surfaces as it appears in mathematical physics, the PI will investigate symplectic properties of deformation spaces of local systems and Galois representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将在算术代数几何学领域进行研究。这是一个融合了两个最古老的数学领域的主题:形状的几何形状可以用最简单的方程式(即多项式)和数字研究来描述。事实证明,这种学科的结合非常富有成果 - 解决了经受住几代人的问题(例如“ Fermat的最后一个定理”)。通用领域与物理有联系,并发现了纠正误差代码和密码学的构建重要应用。 PI的工作主要集中于研究特定方程的研究,这些方程描述了许多对称性的形状以及对象与数学物理学中某些构造的联系。 PI计划将研究生参与一些项目。PI正在努力描述Shimura品种不可或缺的模型,这是在非平滑降低和与研究相关的空间的数量中。特别是,他将继续研究这种素数的阿贝利亚类型的shimura品种的奇异性。他计划通过使用P-Adic Shtukas的新理论来表征这些整体模型,并且在正交Shimura品种的情况下,明确研究了其减少的局部结构。他还想将Shimura品种解释为“算术shtukas”更通用的模量空间的特殊情况,并将Shimura品种特殊点的特殊点概念推广到此类Moduli空间。最后,以与莱曼表面相比的模量理论的类比为动机,在数学物理学中出现时,PI将研究本地系统和Galois表示的变形空间的符合性属性。该奖项反映了NSF的法定任务,并通过使用基金会和广泛的范围来评估了NSF的法定任务,并通过评估范围进行了评估。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regular integral models for Shimura varieties of orthogonal type
正交型Shimura品种的正则积分模型
  • DOI:
    10.1112/s0010437x22007370
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Pappas, G.;Zachos, I.
  • 通讯作者:
    Zachos, I.
Volume and symplectic structure for ℓ-adic local systems
α-adic 局部系统的体积和辛结构
  • DOI:
    10.1016/j.aim.2021.107836
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Pappas, Georgios
  • 通讯作者:
    Pappas, Georgios
On integral models of Shimura varieties
志村品种的积分模型
  • DOI:
    10.1007/s00208-022-02387-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Pappas, Georgios
  • 通讯作者:
    Pappas, Georgios
共 3 条
  • 1
前往

Georgios Pappas其他文献

ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
  • DOI:
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georgios Pappas
    Georgios Pappas
  • 通讯作者:
    Georgios Pappas
    Georgios Pappas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
  • DOI:
    10.1016/j.meegid.2012.01.016
    10.1016/j.meegid.2012.01.016
  • 发表时间:
    2012-04-01
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales
    Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales
  • 通讯作者:
    Bianca Zingales
    Bianca Zingales
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
  • DOI:
    10.5194/essd-16-1703-2024
    10.5194/essd-16-1703-2024
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit
    Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit
  • 通讯作者:
    I. Hoteit
    I. Hoteit
Digitizing Wildlife: The Case of a Reptile 3-D Virtual Museum
野生动物数字化:爬行动物 3D 虚拟博物馆案例
  • DOI:
    10.1109/mcg.2022.3189034
    10.1109/mcg.2022.3189034
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    S. Zotos;Marilena Lemonari;Michael Konstantinou;Anastasios Yiannakidis;Georgios Pappas;P. Kyriakou;Ioannis N. Vogiatzakis;A. Aristidou
    S. Zotos;Marilena Lemonari;Michael Konstantinou;Anastasios Yiannakidis;Georgios Pappas;P. Kyriakou;Ioannis N. Vogiatzakis;A. Aristidou
  • 通讯作者:
    A. Aristidou
    A. Aristidou
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
  • DOI:
    10.1016/j.scp.2023.101026
    10.1016/j.scp.2023.101026
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas
    I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas
  • 通讯作者:
    A. Zorpas
    A. Zorpas
共 7 条
  • 1
  • 2
前往

Georgios Pappas的其他基金

Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
  • 批准号:
    1701619
    1701619
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
  • 批准号:
    1360733
    1360733
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
  • 批准号:
    1102208
    1102208
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
  • 批准号:
    0802686
    0802686
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
  • 批准号:
    0501049
    0501049
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
  • 批准号:
    0201140
    0201140
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
  • 批准号:
    9970378
    9970378
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9996393
    9996393
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9623269
    9623269
  • 财政年份:
    1996
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
  • 批准号:
    9596104
    9596104
  • 财政年份:
    1994
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Continuing Grant
    Continuing Grant

相似国自然基金

基于“理-效-物-地-亲”策略研究藏药沙棘特色品种“形-质-效”多维品质特征及形成机制
  • 批准号:
    82374145
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多尺度可迁移的小麦氮高效品种高通量筛选方法研究
  • 批准号:
    32301693
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
包含品种耐热性的花期高温对玉米影响机理模块研究
  • 批准号:
    42375194
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
旱地小麦品种高产性和稳产性关系及其对土壤肥力的响应
  • 批准号:
    32372225
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
耦合三维辐射传输模型与叶片光合过程的玉米品种级LUE表型鉴定研究
  • 批准号:
    42371373
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
  • 批准号:
    577144-2022
    577144-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Alliance Grants
    Alliance Grants
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
  • 批准号:
    1802169
    1802169
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
    RGPIN-2014-05614
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
    RGPIN-2014-05614
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual