Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读出
基本信息
- 批准号:2348683
- 负责人:
- 金额:$ 51.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Observing cells under the microscope reveals an incredible amount of information about cellular processes. For example, images of cells can reveal cell types, and whether the cells are healthy or sick, among others. This research aims to develop advanced computational models to measure cellular traits in microscopy images. Cellular measurements taken from images are useful to conduct biological research such as understanding how diseases work, diagnosing patients, and searching for effective cures. All of these applications are fundamental to advance and promote national health. An important aspect of this project is that the computational models for measuring cellular traits will be of general purpose and reusable across many biological applications where microscopy images are acquired, with minimal or no manual configuration. This research will design, develop and make publicly available the models and automated tools to facilitate rapid image-based cellular analysis in basic biological research and other biotechnology systems. This project will involve diverse researchers working in an inclusive environment at the intersection of cutting-edge machine learning technologies and image analysis for cell biology. Diverse graduate students and postdocs will be trained in an inclusive environment at the intersection of cutting-edge deep learning technologies andimage analysis for cell biology.Extracting cell morphological features from images is a complex, ad-hoc process without well established standards. Typically, imaging projects develop custom approaches from scratch and measure only a few cellular features given the complexity and diversity of imaging techniques and experimental goals. This lack of a common methodology to define and measure the morphological state of single cells prevents researchers from realizing the full potential of imaging for advancing cell biology. This project aims to create a universal deep-learning model for collecting single-cell morphological data. It will readily quantify cell morphology in any microscopy image, requiring little to no training. The specific goals of this research are: 1) develop methods for learning and extracting multidimensional representations of cell morphology from diverse imaging experiments, 2) formulate strategies for correcting batch effects and removing technical variation, and 3) develop strategies for analyzing and interpreting the biological significance of morphological features. For learning representations, neural networks that can adaptively process multi-channel microscopy images will be developed and trained using self-supervised learning. Domain adaptation techniques will be extended for correcting batch effects. Importantly, learned features will be used to map relations between populations of cells and explainable methods will be designed to facilitate their interpretation. This research will prepare imaging datasets from various public sources for training and evaluation, including the Broad Bioimage Benchmark Collections (BBBC), the Image Data Resource (IDR), and the Human Protein Atlas (HPA). The models created in this project will be applicable to most microscopy imaging protocols to transform images of single cells into quantitative data for biological research. All the results, software tools and models will be publicly available at http://broad.io/morphemThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在显微镜下观察细胞揭示了有关细胞过程的大量信息。例如,细胞图像可以揭示细胞类型以及细胞是否健康或患病等。这项研究旨在开发先进的计算模型来测量显微图像中的细胞特征。从图像中获取的细胞测量值可用于进行生物学研究,例如了解疾病的发病机制、诊断患者和寻找有效的治疗方法。所有这些应用对于推进和促进国民健康至关重要。该项目的一个重要方面是,用于测量细胞特征的计算模型将是通用的,并且可以在许多获取显微图像的生物应用中重复使用,而无需手动配置或最少的手动配置。这项研究将设计、开发并向公众提供模型和自动化工具,以促进基础生物研究和其他生物技术系统中基于图像的快速细胞分析。该项目将涉及不同的研究人员,在尖端机器学习技术和细胞生物学图像分析交叉点的包容性环境中工作。多样化的研究生和博士后将在尖端深度学习技术和细胞生物学图像分析相结合的包容性环境中接受培训。从图像中提取细胞形态特征是一个复杂的临时过程,没有完善的标准。通常,鉴于成像技术和实验目标的复杂性和多样性,成像项目从头开始开发定制方法,并且仅测量一些细胞特征。由于缺乏定义和测量单细胞形态状态的通用方法,研究人员无法充分发挥成像技术在推进细胞生物学方面的潜力。该项目旨在创建一个用于收集单细胞形态数据的通用深度学习模型。它可以轻松量化任何显微镜图像中的细胞形态,几乎不需要任何培训。这项研究的具体目标是:1)开发从不同成像实验中学习和提取细胞形态多维表示的方法,2)制定纠正批次效应和消除技术差异的策略,3)开发分析和解释生物特征的策略。形态特征的意义。对于学习表示,将使用自我监督学习来开发和训练能够自适应处理多通道显微镜图像的神经网络。领域适应技术将被扩展以纠正批次效应。重要的是,学习到的特征将用于绘制细胞群之间的关系,并且将设计可解释的方法来促进它们的解释。这项研究将准备来自各种公共来源的成像数据集用于培训和评估,包括广泛生物图像基准集合(BBBC)、图像数据资源(IDR)和人类蛋白质图谱(HPA)。该项目中创建的模型将适用于大多数显微镜成像协议,将单细胞图像转换为生物研究的定量数据。所有结果、软件工具和模型都将在 http://broad.io/morphem 上公开。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Caicedo其他文献
Technology progress and clean vehicle policies on fleet turnover and equity: insights from household vehicle fleet micro-simulations with ATLAS
技术进步和清洁汽车政策对车队周转率和股权的影响:来自 ATLAS 家庭车队微观模拟的见解
- DOI:
10.1080/03081060.2024.2353784 - 发表时间:
2024-05-23 - 期刊:
- 影响因子:0
- 作者:
Ling Jin;Connor P. Jackson;Yuhan Wang;Qianmiao Chen;Tin Ho;C. Spurlock;Aaron Brooker;Jacob Holden;J. Gonder;Mohamed Amine Bouzaghrane;Bingrong Sun;Shivam Sharda;Venu Garikapati;Tom Wenzel;Juan Caicedo - 通讯作者:
Juan Caicedo
Genetic analysis and multimodal imaging identify novel mtDNA 12148T>C leading to multisystem dysfunction with tissue-specific heteroplasmy
遗传分析和多模态成像发现新型 mtDNA 12148T>C 导致多系统功能障碍和组织特异性异质性
- DOI:
10.1101/2023.11.03.23297854 - 发表时间:
2023-11-05 - 期刊:
- 影响因子:0
- 作者:
Kinsley C. Belle;Alexander Kreymerman;Nirmal Vadgama;Marco H. Ji;Sandeep Randhawa;Juan Caicedo;Megan Wong;Stephanie P. Muscat;Casey A. Gifford;Richard T. Lee;Jamal Nasir;Jill L. Young;Gregory Enns;Ioannis Karakikes;M. Mercola;Edward H. Wood - 通讯作者:
Edward H. Wood
Segmentation metric misinterpretations in bioimage analysis
生物图像分析中分割度量的误解
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:48
- 作者:
D. Hirling;Ervin A. Tasnádi;Juan Caicedo;Maria V Caroprese;Rickard Sjögren;M. Aubreville;K. Koos;P. Horvath - 通讯作者:
P. Horvath
Juan Caicedo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Caicedo', 18)}}的其他基金
Collaborative Research: Image-based Readouts of Cellular State using Universal Morphology Embeddings
协作研究:使用通用形态学嵌入基于图像的细胞状态读数
- 批准号:
2134695 - 财政年份:2022
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
REU SITE: Collaborative Research: Integrated Academia-Industry Research Experience for Undergraduate in Smart Structure Technology (IAIRESST)
REU 网站:合作研究:智能结构技术本科生学术界与工业界的综合研究经验 (IAIRESST)
- 批准号:
1659507 - 财政年份:2017
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: Implementing and Assessing Strategies for Environments for Fostering Effective Critical Thinking (EFFECTs) Development and Implementation
协作研究:实施和评估促进有效批判性思维(EFFECT)的环境策略的制定和实施
- 批准号:
1022971 - 财政年份:2010
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
NUE: Nano in a Global Context for Engineering Students
NUE:面向工程学生的全球背景下的纳米
- 批准号:
1042040 - 财政年份:2010
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
REU Site: Collaborative research: International REU Program in Smart Structures
REU 网站:合作研究:国际 REU 智能结构项目
- 批准号:
0851671 - 财政年份:2009
- 资助金额:
$ 51.27万 - 项目类别:
Continuing Grant
CAREER: Cooperative Human-Computer Model Updating Cognitive Systems (MUCogS)
职业:协作人机模型更新认知系统(MUCogS)
- 批准号:
0846258 - 财政年份:2009
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Developing an Engineering Environment for Fostering Effective Critical Thinking (EFFECT) Through Measurements
通过测量开发一个工程环境来培养有效的批判性思维 (EFFECT)
- 批准号:
0633635 - 财政年份:2007
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
相似国自然基金
翻拍文档图像的多模态篡改取证技术研究
- 批准号:62371301
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于小波交叉注意力机制的单幅图像可变光圈散焦增强研究
- 批准号:62301332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多段有限角光子计数能谱CT图像重建方法研究
- 批准号:62371184
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向夜间雾天场景的图像降质模型与去雾方法研究
- 批准号:62301453
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞微核图像高通量智能识别与辅助诊断技术研究
- 批准号:62363031
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
- 批准号:
2238180 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical Campaign to Image CZ Structure Along Hillslope Gradients in the Neotropics
合作研究:新热带地区沿山坡梯度的 CZ 结构成像地球物理运动
- 批准号:
2233556 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306572 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Individual Multimodal Pathway Statistics for Predicting Treatment Response in Late-life Depression
用于预测晚年抑郁症治疗反应的个体多模式通路统计
- 批准号:
10722921 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别: