Conference: Combinatorial Algebra Meets Algebraic Combinatorics

会议:组合代数遇上代数组合学

基本信息

  • 批准号:
    2348525
  • 负责人:
  • 金额:
    $ 1.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

The 21st Annual Combinatorial Algebra meets Algebraic Combinatorics (CAAC) conference is scheduled to be held at the Université du Québec à Montréal from Friday, January 26, 2024, to Sunday, January 28, 2024. Since its inception in 2004, the CAAC meeting has annually provided a unique platform for the dynamic interaction between combinatorial algebra and algebraic combinatorics. Emphasizing inclusivity, the conference has traditionally fostered a supportive environment for graduate students, postdoctoral fellows, and early career researchers to engage with established mathematicians, present their work, explore new research directions, and establish collaborative relationships.Over the years, CAAC conferences have gained popularity, attracting a growing number of participants and contributing significantly to the mathematical community. The upcoming CAAC 2024 conference aims to continue this tradition by featuring four invited 50-minute lectures, contributed talks by graduate students and postdoctoral fellows, software demonstrations, and a poster session. Recognizing the importance of inclusivity, all talks will be streamed online, enabling broader participation from mathematicians unable to attend in person. The conference also seeks funding to support participants from the United States, fostering collaboration, knowledge dissemination, and the advancement of students and postdoctoral fellows in the fields of algebraic combinatorics and combinatorial algebra. Further details and updates about CAAC 2024 can be found on the conference website: https://sites.google.com/view/caac2024/home.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alejandro Morales其他文献

Precursor models construction at preschool education: an approach to improve scientific education in the classroom
学前教育先驱模型建设:提高课堂科学教育水平的途径
  • DOI:
    10.1007/978-3-030-30255-9_2
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sabrina Patricia Canedo;Josep Castelló;Paloma García;Alejandro Morales
  • 通讯作者:
    Alejandro Morales
HOOK FORMULAS FOR SKEW SHAPES IV. INCREASING TABLEAUX AND FACTORIAL GROTHENDIECK POLYNOMIALS
斜线形状的钩子公式 IV.
Calidad en sitios web: análisis de la producción científica
现场网络校准:analisis de la producción científica
  • DOI:
    10.5281/zenodo.4029628
  • 发表时间:
    2020-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro Morales;Rafael Pedraza;Lluís Codina
  • 通讯作者:
    Lluís Codina
The draft nuclear genome assembly of Eucalyptus pauciflora: new approaches to comparing de novo assemblies
少花桉核基因组组装草案:比较从头组装的新方法
  • DOI:
    10.1101/678730
  • 发表时间:
    2019-06-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiwen Wang;Ashutosh Das;D. Kainer;Miriam Schalamun;Alejandro Morales;B. Schwessinger;R. Lanfear
  • 通讯作者:
    R. Lanfear
Culturally Competent Qualitative Research With Latino Immigrants
对拉丁裔移民进行文化能力定性研究
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lizette Ojeda;Lisa Y. Flores;Rocio Rosales Meza;Alejandro Morales
  • 通讯作者:
    Alejandro Morales

Alejandro Morales的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alejandro Morales', 18)}}的其他基金

Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
  • 批准号:
    2154019
  • 财政年份:
    2022
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Standard Grant
Combinatorics of Skew Tableaux and Flow Polytopes
倾斜表格和流动多面体的组合
  • 批准号:
    1855536
  • 财政年份:
    2019
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

关于polyomino的若干组合代数问题
  • 批准号:
    12361003
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
有限群及其表示中的代数与组合结构
  • 批准号:
    12371019
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Gentle代数的模范畴和导出范畴—曲面的组合与稳定条件
  • 批准号:
    12271321
  • 批准年份:
    2022
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于代数与组合方法的超平面性质应用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
代数组合学中的若干Schur正性问题
  • 批准号:
    12171362
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

New perspectives in combinatorial algebra
组合代数的新视角
  • 批准号:
    2302149
  • 财政年份:
    2023
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Continuing Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
  • 批准号:
    2302019
  • 财政年份:
    2023
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Standard Grant
Graduate Meeting on Combinatorial Commutative Algebra
组合交换代数研究生会议
  • 批准号:
    2206872
  • 财政年份:
    2022
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Standard Grant
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2022
  • 资助金额:
    $ 1.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了