CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective

职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角

基本信息

  • 批准号:
    2340075
  • 负责人:
  • 金额:
    $ 62.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

In the landscape of future smart cities, the integration of artificial intelligence and edge computing has led to a multitude of applications that create transformative potential for sustainable urban living. From smart healthcare systems to intelligent traffic control systems, these applications are linked to processing of substantial datasets generated by geographically distributed devices. The objective of this project is to develop an integrated and reliable pipeline that will effectively and automatically prepare, clean, and analyze the associated distributed datasets while minimizing overall costs of the system and dynamically balancing between data preparation and data processing tasks. This will be accomplished using innovative technologies, including federated data pre-processing, federated learning, new coding schemes, and compression techniques. A suite of optimization problems and associated algorithmic solutions will be developed. The proposed methodologies will be validated and refined through extensive simulation and experiments performed using a testbed developed within the PI’s lab. This project has the potential to significantly improve the quality of life for US citizens by enabling data-driven, smart technologies, such as smart healthcare monitoring and smart traffic control systems that are not yet feasible. A key goal is to contribute to creating more efficient and sustainable urban environments. Further, the project will include integrated education, outreach, and mentoring activities through local events like the Everything is Science Festival in Kentucky, and collaborating with the Kentucky-West Virginia Louis Stokes Alliance for Minority Participation. A key goal is to foster diversity and inclusion and empower the next generation of experts working in the emerging fields of machine learning, data science, and edge computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在未来智慧城市的格局中,人工智能和边缘计算的集成催生了多种应用,为可持续城市生活创造了变革潜力,从智能医疗系统到智能交通控制系统,这些应用都与大量数据处理相关。该项目的目标是开发一个集成且可靠的管道,该管道将有效地自动准备、清理和分析相关的分布式数据集,同时最大限度地降低系统的总体成本并动态平衡数据准备和数据之间的关系。这将通过创新技术来完成,包括将开发联合数据预处理、联合学习、新的编码方案和压缩技术,并通过使用内部开发的测试平台进行广泛的模拟和实验来验证和完善所提出的方法。 PI 实验室的一个关键目标是通过启用数据驱动的智能技术(例如尚不可行的智能医疗监控和智能交通控制系统)来显着改善美国公民的生活质量。创造更高效、更可持续的城市此外,该项目将包括通过肯塔基州一切都是科学节等当地活动进行综合教育、外展和指导活动,并与肯塔基州-西弗吉尼亚州路易斯斯托克斯少数族裔参与联盟合作,一个关键目标是促进多样性和包容性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hana Khamfroush其他文献

Smart Edge-Enabled Traffic Light Control: Improving Reward-Communication Trade-offs with Federated Reinforcement Learning
支持智能边缘的交通灯控制:通过联合强化学习改善奖励通信权衡
Optimal Accuracy-Time Trade-off for Deep Learning Services in Edge Computing Systems
边缘计算系统中深度学习服务的最佳精度与时间权衡
On Progressive Network Recovery From Massive Failures Under Uncertainty
不确定性下大规模故障的渐进式网络恢复
Service Placement and Request Scheduling for Data-Intensive Applications in Edge Clouds
边缘云中数据密集型应用程序的服务放置和请求调度
  • DOI:
    10.1109/tnet.2020.3048613
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vajiheh Farhadi;Fidan Mehmeti;T. He;T. L. Porta;Hana Khamfroush;Shiqiang Wang;K. Chan;Konstantinos Pou
  • 通讯作者:
    Konstantinos Pou
Progressive damage assessment and network recovery after massive failures
大规模故障后的渐进式损坏评估和网络恢复

Hana Khamfroush的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hana Khamfroush', 18)}}的其他基金

CRII: CSR: Federated Resource Management in Mobile Edge Computing
CRII:CSR:移动边缘计算中的联合资源管理
  • 批准号:
    1948387
  • 财政年份:
    2020
  • 资助金额:
    $ 62.47万
  • 项目类别:
    Standard Grant

相似国自然基金

数据与知识融合驱动的晶圆图缺陷生成式检测模型研究
  • 批准号:
    52375485
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合检监测数据与有限元自动建模的桥梁结构分析评估理论
  • 批准号:
    52378289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
深度融合人机智能的研究生学术能力评价、归因与提升路径研究
  • 批准号:
    62377008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
检监测数据融合驱动的混凝土斜拉桥既有裂缝智能诊断数字孪生系统研究
  • 批准号:
    52378288
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀有循环肿瘤细胞形-电特征融合的超高精度检测方法及装置研究
  • 批准号:
    52375562
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Targeted Automated Nephrology e-Consultation for Diabetic Kidney Disease
糖尿病肾病有针对性的自动化肾病电子咨询
  • 批准号:
    10591976
  • 财政年份:
    2023
  • 资助金额:
    $ 62.47万
  • 项目类别:
Integrated Treatment for Co-Occurring Opioid Use Disorder and Posttraumatic Stress Disorder
并发阿片类药物使用障碍和创伤后应激障碍的综合治疗
  • 批准号:
    10693331
  • 财政年份:
    2022
  • 资助金额:
    $ 62.47万
  • 项目类别:
Integrated Treatment for Co-Occurring Opioid Use Disorder and Posttraumatic Stress Disorder
并发阿片类药物使用障碍和创伤后应激障碍的综合治疗
  • 批准号:
    10524647
  • 财政年份:
    2022
  • 资助金额:
    $ 62.47万
  • 项目类别:
Integrated Virginia Research Training Centers in KUH (IGNITE KUH)
KUH 弗吉尼亚综合研究培训中心 (IGNITE KUH)
  • 批准号:
    10657702
  • 财政年份:
    2021
  • 资助金额:
    $ 62.47万
  • 项目类别:
Integrated Virginia Research Training Centers in KUH (IGNITE KUH)
KUH 弗吉尼亚综合研究培训中心 (IGNITE KUH)
  • 批准号:
    10285526
  • 财政年份:
    2021
  • 资助金额:
    $ 62.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了