CRII: CSR: Federated Resource Management in Mobile Edge Computing

CRII:CSR:移动边缘计算中的联合资源管理

基本信息

项目摘要

Smart cities are urban areas that use Internet connected devices, called the Internet-of-Things (IoT), to collect and analyze large amounts of data to increase the productivity and efficiency of city resources. Smart home sensors and smartphones are examples of things used in the era of smart cities, each creating a tremendous amount of data that needs to be processed. Edge computing is an emerging technology used to process such large amounts of data in real-time. Edge computing also poses new resource management challenges due to its limited capacity. This project focuses on optimization of resource management in edge and cloud computing frameworks.This project proposes to use concepts of federated learning and reinforcement learning to provide optimal solutions for service placement and request scheduling in multi-tier edge and cloud computing frameworks. This project will focus on new algorithms and system design technologies to trade off the quality-of-service (QoS) and the cost in edge computing systems. Three main thrusts include: 1) finding theoretical bounds through mathematical formulation and algorithm design, 2) finding more practical and adaptive solutions through multi-agent reinforcement learning and the federated learning framework, and 3) comparison of practical solutions with theoretical bounds through numerical analysis and implementations on a mobile edge computing test-bed. This project will have impacts on the future IoT and smart cities applications by improving the cost of providing such applications while maintaining certain QoS levels for users. Algorithms and an optimization framework developed in this project will contribute to the research in design and development of scalable and reliable edge computing systems as building blocks of IoT applications. This research will be integrated into classroom teaching as a special topics graduate level course offered by the investigator. Specific outreach activities for middle school, high school and Berea College students aim to increase participation of underrepresented groups in computer science.The data produced by this project including codes, experimental results, videos of talks, and publications will be shared using the project page that will be maintained during the lifetime of this project. Upon finalizing the two-year term of the project, an archive of the project webpage and information will be digitally stored and made available upon request by any researcher or entity if the webpage is taken down. Link to the project repository: http://www.cs.uky.edu/~khamfroush/fed-mec.php. This project is jointly funded by the Computer Systems Research Program in the Division of Computer and Network Systems and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智慧城市是使用互联网连接设备(称为物联网(IoT))来收集和分析大量数据以提高城市资源的生产力和效率的城市地区。智能家居传感器和智能手机是智慧城市时代使用的事物的例子,它们都会产生大量需要处理的数据。边缘计算是一种新兴技术,用于实时处理如此大量的数据。由于容量有限,边缘计算还带来了新的资源管理挑战。该项目专注于边缘和云计算框架中资源管理的优化。该项目建议使用联邦学习和强化学习的概念,为多层边缘和云计算框架中的服务放置和请求调度提供最优解决方案。该项目将重点关注新算法和系统设计技术,以权衡边缘计算系统的服务质量(QoS)和成本。三个主要目标包括:1)通过数学公式和算法设计寻找理论界限,2)通过多智能体强化学习和联邦学习框架寻找更实用和适应性更强的解决方案,3)通过数值分析将实际解决方案与理论界限进行比较以及移动边缘计算测试台上的实现。该项目将通过提高提供此类应用程序的成本,同时维持一定的用户服务质量水平,对未来的物联网和智慧城市应用产生影响。该项目开发的算法和优化框架将有助于可扩展且可靠的边缘计算系统的设计和开发研究,作为物联网应用的构建块。这项研究将作为研究者提供的专题研究生水平课程纳入课堂教学。针对初中生、高中生和伯里亚学院学生的具体外展活动旨在增加计算机科学中代表性不足的群体的参与。该项目产生的数据,包括代码、实验结果、演讲视频和出版物将通过以下项目页面共享:将在该项目的生命周期内进行维护。项目的两年期限结束后,项目网页和信息的档案将以数字方式存储,并在网页被删除时根据任何研究人员或实体的要求提供。项目存储库链接:http://www.cs.uky.edu/~khamfroush/fed-mec.php。 该项目由计算机和网络系统部的计算机系统研究计划和刺激竞争性研究既定计划 (EPSCoR) 联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint Compression and Offloading Decisions for Deep Learning Services in 3-Tier Edge Systems
三层边缘系统中深度学习服务的联合压缩和卸载决策
Optimal Accuracy-Time Trade-off for Deep Learning Services in Edge Computing Systems
边缘计算系统中深度学习服务的最佳精度与时间权衡
QoS-Aware Placement of Deep Learning Services on the Edge with Multiple Service Implementations
通过多种服务实现在边缘进行深度学习服务的 QoS 感知部署
Communication-Loss Trade-Off in Federated Learning: A Distributed Client Selection Algorithm
联邦学习中的通信损失权衡:分布式客户端选择算法
  • DOI:
    10.1109/ccnc49033.2022.9700601
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hosseinzadeh, Minoo;Hudson, Nathaniel;Heshmati, Sam;Khamfroush, Hana
  • 通讯作者:
    Khamfroush, Hana
QoS-Aware Priority-Based Task Offloading for Deep Learning Services at the Edge
用于边缘深度学习服务的 QoS 感知、基于优先级的任务卸载
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hana Khamfroush其他文献

On Progressive Network Recovery From Massive Failures Under Uncertainty
不确定性下大规模故障的渐进式网络恢复
Smart Edge-Enabled Traffic Light Control: Improving Reward-Communication Trade-offs with Federated Reinforcement Learning
支持智能边缘的交通灯控制:通过联合强化学习改善奖励通信权衡
Service Placement and Request Scheduling for Data-Intensive Applications in Edge Clouds
边缘云中数据密集型应用程序的服务放置和请求调度
  • DOI:
    10.1109/tnet.2020.3048613
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vajiheh Farhadi;Fidan Mehmeti;T. He;T. L. Porta;Hana Khamfroush;Shiqiang Wang;K. Chan;Konstantinos Pou
  • 通讯作者:
    Konstantinos Pou
Progressive damage assessment and network recovery after massive failures
大规模故障后的渐进式损坏评估和网络恢复
On Propagation of Phenomena in Interdependent Networks
论相互依存网络中现象的传播

Hana Khamfroush的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hana Khamfroush', 18)}}的其他基金

CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

准社会互动视角下CSR数字化沟通对品牌绩效的差异化影响、机制与管理对策
  • 批准号:
    72362008
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
信号理论视角下的企业社会责任逆向解耦策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
“双碳”目标视域下企业社会责任对碳排放的作用机理、实现路径与行为演化研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
平台型企业社会责任行为内在驱动机制与能力构建研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共同富裕目标下企业社会责任的实现路径及绩效研究
  • 批准号:
    72272171
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

CSR: Small: Modernizing Dynamic Binary Translation Systems
CSR:小型:现代化动态二进制翻译系统
  • 批准号:
    2330752
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CSR: Opportunistic Computation Offloading for Battery-Free Computing Devices
CRII:CSR:无电池计算设备的机会计算卸载
  • 批准号:
    2347692
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
  • 批准号:
    2336886
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CSR: Small: Elastic Soft State Cache as an OS Service
CSR:小型:弹性软状态缓存作为操作系统服务
  • 批准号:
    2330831
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了