CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
基本信息
- 批准号:2339932
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large generative artificial intelligence (AI) models, such as ChatGPT, are widely used for information seeking—helping people find information on a topic. Compared to traditional search engines, they provide a coherent narrative, which could potentially facilitate the exploratory phase of users' searches. Generative AI responses are more readable, coherent, and contextually appropriate; hence, they sound authoritative and definitive. However, existing generative AI models are subject to problems such as hallucinations, unsupported misleading answers, outright misinformation, and hidden biases. Another issue is that the majority of user queries are ambiguous. Current systems, including those that employ generative AI models, do not appropriately consider ambiguity by providing users with alternative answers to their queries. The vision of this project is to enable users to use generative AI models to obtain an interpretable, diverse, and unbiased set of alternative answers, viewpoints, subtopics, or aspects as required for various questions or tasks in information access, where each distinct answer or viewpoint is faithfully attributable to a set of evidence and supporting information sources. This project aims to make information access easier, more effective, and more trustworthy for users. Given that search is among the most common online activities, this project is positioned to have a substantial impact on society, promoting a more comprehensive understanding of topics, encouraging critical thinking, and facilitating informed decision-making.To achieve the above goal, this project proposes the development of novel retrieval models to enhance the relevance, diversity, and interpretability of their results. This project will develop models for multi-granular diversification of search results to significantly improve the generalizability of retrieval models in providing diverse results for open-domain queries. In addition, this project enables the full utilization of search results by AI systems through explanations of their relevance and diversity. Building on top of explainable search results, the project introduces explanation-based optimization of search results. This involves improving search results based on reasoning over failures of retrieval models. The resulting retrieval systems will be particularly useful for augmenting large generative AI models through access to explainable explicit knowledge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
ChatGPT 等大型生成人工智能 (AI) 模型广泛用于信息搜索,帮助人们查找某个主题的信息,与传统搜索引擎相比,它们提供了连贯的叙述,这可能会促进用户的探索阶段。生成式人工智能的回答更具可读性、连贯性和语境恰当性;因此,它们听起来具有权威性和明确性。然而,现有的生成式人工智能模型存在诸如幻觉、缺乏支持的误导性答案、完全错误的信息和隐藏等问题。另一个问题是,大多数用户查询都是模糊的,包括那些采用生成式人工智能模型的系统,没有通过为用户的查询提供替代答案来适当地考虑歧义。使用生成式人工智能模型来获取信息访问中各种问题或任务所需的一组可解释的、多样化的和公正的替代答案、观点、子主题或方面,其中每个不同的答案或观点都忠实地归因于一组证据和支持该项目旨在让用户更轻松、更有效、更值得信赖地获取信息。鉴于搜索是最常见的在线活动之一,该项目旨在对社会产生重大影响,促进对信息的更全面的了解。为了实现上述目标,该项目提出开发新颖的检索模型,以增强其结果的相关性、多样性和可解释性。该项目将开发多粒度模型。搜索结果多样化,显着提高检索模型在为开放域查询提供不同结果方面的通用性此外,该项目通过解释搜索结果的相关性和多样性,使人工智能系统能够充分利用搜索结果。基于搜索结果的优化。这涉及基于对检索模型失败的推理来改进搜索结果,这对于通过访问可解释的显性知识来增强大型生成人工智能模型特别有用。该奖项反映了 NSF 的法定规定。使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Razieh Rahimi其他文献
Query-driven Segment Selection for Ranking Long Documents
用于对长文档进行排名的查询驱动的段选择
- DOI:
10.1145/3459637.3482101 - 发表时间:
2021-09-10 - 期刊:
- 影响因子:0
- 作者:
Youngwoo Kim;Razieh Rahimi;Hamed Bonab;James Allan - 通讯作者:
James Allan
Alignment Rationale for Query-Document Relevance
查询-文档相关性的对齐原理
- DOI:
10.1145/3477495.3531883 - 发表时间:
2022-07-06 - 期刊:
- 影响因子:0
- 作者:
Youngwoo Kim;Razieh Rahimi;J. Allan - 通讯作者:
J. Allan
Conditional Natural Language Inference
条件自然语言推理
- DOI:
10.18653/v1/2023.findings-emnlp.456 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Youngwoo Kim;Razieh Rahimi;James Allan - 通讯作者:
James Allan
Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank
Rank-LIME:用于学习排名的局部模型不可知特征归因
- DOI:
10.1145/3578337.3605138 - 发表时间:
2022-12-24 - 期刊:
- 影响因子:0
- 作者:
Tanya Chowdhury;Razieh Rahimi;J. Allan - 通讯作者:
J. Allan
Axiomatic Analysis of Cross-Language Information Retrieval
跨语言信息检索的公理分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Razieh Rahimi;A. Shakery;Irwin King - 通讯作者:
Irwin King
Razieh Rahimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于多重图结构的可解释生成式合成生物深度神经网络研究
- 批准号:62373257
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于结构引导多模态知识图谱的可解释绘画心理分析研究
- 批准号:62372468
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于超声时空频域融合学习的肝纤维化可解释精准诊断研究
- 批准号:62301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于联邦学习和CT影像构建可解释性模型量化IB-IIA期非小细胞肺癌复发风险研究
- 批准号:82371954
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于CT影像联合病理三级淋巴结构的可解释性智能模型精准预测肝细胞癌切除术后预后的研究
- 批准号:82302315
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
- 批准号:
2316450 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
A Basic Study for Teaching Face-to-Face Explanation Based on the Audience Awareness Scale
基于受众认知量表的面对面讲解教学基础研究
- 批准号:
23K02662 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111216 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111473 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Entropy-based Hierarchical Visualization to Support Cross-Scale Explanation of Structural Change
基于熵的分层可视化支持结构变化的跨尺度解释
- 批准号:
20K20482 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)