CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells

职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模

基本信息

  • 批准号:
    2339054
  • 负责人:
  • 金额:
    $ 53.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2029-07-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) award will support research that will study the cell migration through pores between endothelial cells using computer simulations. It is motivated by a fascinating and crucial process happening in our body every moment: a cell squeezes through pores much smaller than itself. For example, red blood cells around 8 μm, frequently squeeze through endothelial pores around 0.5 μm in our spleens. This is their regular ‘physical fitness test’, which destroys aged cells and diseased cells in malaria and blood disorders. Another example is the neutrophil, the most abundant white blood cell, which exits the circulation to fight infections in the tissues by squeezing through endothelial pores in the blood vessel walls. In cancer, circulating tumor cells also squeeze through these pores to metastasize in distant organs, which is the major contributor to cancer mortality. To squeeze through such narrow pores, all these cells have to experience extreme mechanical deformation. Slight changes of molecular structures in the cell would have significant consequence on the cell’s survival. In this project, advanced computer simulations will be applied to predict how different components of the cell affect its ability to pass through small pores. This research will also be complemented by educational and outreach programs based on curriculum development, hands-on construction of tensegrity structures, and a cell squeezing demonstrator to inspire K-12 students to pursue STEM careers. The research goal is to reveal the biomechanics and mechanobiology of transendothelial migration (TEM) of cells by multiscale modeling and its integration with experimental data. Although extensive experiments have been conducted to study TEM of cells, achieving a quantitative understanding has proven challenging without the aid of mathematical modeling. Unfortunately, there are limited predictive mathematical models of TEM due to its complex and multiscale nature. To address this challenge, the research will adopt a multiscale modeling approach and integrate experimental data to investigate TEM of three cell types: red blood cells, neutrophils, and tumor cells. Specifically, the research objectives include: (i) study TEM of mature and immature red blood cells during mechanical filtration in spleens; (ii) study TEM of neutrophils during inflammation response in lung capillary beds; (iii) study TEM of a tumor cell nucleus during cancer metastasis in distant organs. This project will advance our fundamental understanding of TEM and contribute valuable insights into a wide range of biomedical problems such as biomechanics and mechanobiology of cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)奖将支持利用计算机模拟研究细胞通过内皮细胞之间的毛孔迁移的研究,其动机是我们体内每时每刻都发生着一个令人着迷的关键过程:细胞挤过更小的毛孔。例如,8μm左右的红细胞经常挤过我们脾脏中0.5μm左右的内皮孔,这是它们的常规“体能测试”,它会破坏衰老的细胞和细胞。另一个例子是中性粒细胞,这是最丰富的白细胞,它通过挤压血管壁的内皮孔而退出循环,以抵抗组织中的感染。在癌症中,循环肿瘤细胞也会挤压。通过这些孔隙转移到远处的器官,这是癌症死亡的主要原因。为了挤过如此狭窄的孔隙,所有这些细胞都必须经历细胞内分子结构的轻微变化。在该项目中,将应用先进的计算机模拟来预测细胞的不同成分如何影响其通过小孔的能力。这项研究还将得到基于课程开发、双手的教育和推广计划的补充。 -张拉整体结构的构建和细胞挤压演示器,以激励 K-12 学生从事 STEM 职业研究目标是通过揭示细胞跨内皮迁移 (TEM) 的生物力学和力学生物学。尽管已经进行了广泛的实验来研究细胞的 TEM,但在没有数学建模的帮助下实现定量理解已被证明是具有挑战性的,不幸的是,由于 TEM 的复杂性和预测性,其预测数学模型有限。为了应对这一挑战,该研究将采用多尺度建模方法和实验数据来研究红细胞、中性粒细胞和肿瘤细胞这三种细胞的 TEM。成熟红色和未成熟红色(ii) 研究肺毛细血管床炎症反应期间的中性粒细胞的 TEM;(iii) 研究远处器官癌症转移期间肿瘤细胞核的 TEM。对细胞生物力学和细胞力学生物学等广泛的生物医学问题提出了宝贵的见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhangli Peng其他文献

Deformation of the erythrocyte cytoskeleton in tank treading motions
坦克踩踏运动中红细胞细胞骨架的变形
  • DOI:
    10.1039/c3sm50895a
  • 发表时间:
    2013-07-17
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhangli Peng;Q. Zhu
  • 通讯作者:
    Q. Zhu
Primary cilia have a length-dependent persistence length
初级纤毛具有长度依赖性的持续长度
Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging
通过高速成像绘制微流体通道横截面的惯性迁移
  • DOI:
    10.1038/s41378-020-00217-y
  • 发表时间:
    2020-11-16
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Jian Zhou;Zhangli Peng;I. Papautsky
  • 通讯作者:
    I. Papautsky
Two-Component Dissipative Particle Dynamics Model of Red Blood Cells
红细胞二元耗散粒子动力学模型
  • DOI:
    10.1016/j.bpj.2013.11.3179
  • 发表时间:
    2014-01-28
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Zhangli Peng;I. Pivkin;Xuejin Li;G. Karniadakis;M. Dao
  • 通讯作者:
    M. Dao
Kinetic theory for DNA melting with vibrational entropy.
DNA 与振动熵熔化的动力学理论。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sebastian Sensale;Zhangli Peng;Hsueh
  • 通讯作者:
    Hsueh

Zhangli Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhangli Peng', 18)}}的其他基金

Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation
NSF-ANR 合作研究:终末红细胞剜除机制
  • 批准号:
    2210366
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical, Numerical, and Experimental Investigation of Flow Sensing by the Primary Cilium
合作研究:初级纤毛流量传感的数学、数值和实验研究
  • 批准号:
    1951526
  • 财政年份:
    2020
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
  • 批准号:
    1948347
  • 财政年份:
    2019
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
  • 批准号:
    1706436
  • 财政年份:
    2017
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Standard Grant

相似国自然基金

多尺度冠状动脉CT在无创评估非阻塞性冠心病循环功能和预测不良结局中的研究
  • 批准号:
    82302187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
车用动力电池不一致性多尺度特征聚类模型及均衡预测控制研究
  • 批准号:
    51907030
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非饱和状态下纤维混凝土氯离子传输及其理论模型
  • 批准号:
    51808508
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向压电智能复合材料可靠性优化设计的极限安定承载多尺度分析
  • 批准号:
    51805447
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
面向一次性机械的轴承钢疲劳弹性寿命分散带多尺度预测方法
  • 批准号:
    51875117
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Unraveling predictive and multiscale dynamics in turbulence for flow control
职业:揭示湍流中流动控制的预测和多尺度动力学
  • 批准号:
    2142916
  • 财政年份:
    2021
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Continuing Grant
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
  • 批准号:
    10606491
  • 财政年份:
    2020
  • 资助金额:
    $ 53.95万
  • 项目类别:
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
  • 批准号:
    10374855
  • 财政年份:
    2020
  • 资助金额:
    $ 53.95万
  • 项目类别:
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
  • 批准号:
    10001244
  • 财政年份:
    2020
  • 资助金额:
    $ 53.95万
  • 项目类别:
CAREER: Multiferroic Materials - Predictive Modeling, Multiscale Analysis, and Optimal Design
职业:多铁性材料 - 预测建模、多尺度分析和优化设计
  • 批准号:
    1351561
  • 财政年份:
    2014
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了