CAREER: Unraveling predictive and multiscale dynamics in turbulence for flow control
职业:揭示湍流中流动控制的预测和多尺度动力学
基本信息
- 批准号:2142916
- 负责人:
- 金额:$ 50.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Turbulent flow plays a crucial role in health and engineering across a range of important issues, from climate to aviation and cardiovascular disease. A better understanding of turbulence is thus central to human health and the sustainability of natural resources. The most essential features of turbulence are its chaotic and multiscale natures, posing both challenges and opportunities. To address this challenge, the principal aim of this project is to provide a new theoretical and computational research avenue that uses a deterministic framework to unravel predictable and multiscale characteristics in turbulence for flow control. In addition to providing the fundamental knowledge necessary to advance energy-saving flow-control strategies, this project will also provide the perfect educational platform to promote practical workforce training in academia as the real-world importance of turbulence and flow control will excite students at various levels. To this end, industry-relevant projects will be developed to cultivate a highly qualified industrial workforce by bridging the gap between academic work and industrial problems.The goal of this project is to apply recent advances in the dynamical systems viewpoint of turbulence to solve the problem of the chaotic and multiscale nature embedded in turbulence for rigorous flow control. The key idea is to uncover the predictability and multiscale interactions in turbulence using so-called exact coherent solutions to the governing Navier-Stokes equations. The new knowledge obtained will be exploited for cost-effective turbulence control. In pursuit of this goal, the specific objectives are: (i) identify the predictive dynamics using small-scale exact coherent solutions and (ii) characterize the multiscale interactions between small-scale and large-scale exact coherent solutions and exploit them for flow control. Direct numerical simulation and large-eddy simulation will be employed to simulate and analyze small-scale and large-scale exact coherent solutions, respectively, along with a suite of analysis tools, including linear instability analysis and resolvent analysis. The discovery that predictive and multiscale dynamics exist will lead to a more rigorous control strategy that can steer turbulence toward desirable states, whereby targeted larger scales are controlled by controlling smaller ones. As energy losses in various industrial flow systems are largely associated with turbulent drag, this project has far-reaching implications in effectively improving the energy efficiency of the systems by taking full advantage of the predictive and multiscale dynamics in turbulence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流在从气候到航空和心血管疾病等一系列重要问题的健康和工程中发挥着至关重要的作用。因此,更好地理解湍流对于人类健康和自然资源的可持续性至关重要。湍流最本质的特征是其混沌性和多尺度性,既带来了挑战,也带来了机遇。为了应对这一挑战,该项目的主要目标是提供一种新的理论和计算研究途径,使用确定性框架来揭示流动控制湍流的可预测和多尺度特征。除了提供推进节能流量控制策略所需的基础知识外,该项目还将提供完美的教育平台,以促进学术界的实际劳动力培训,因为湍流和流量控制的现实重要性将使各个领域的学生兴奋不已。水平。为此,将开发与工业相关的项目,通过弥合学术工作和工业问题之间的差距,培养高素质的工业劳动力。该项目的目标是应用湍流动力系统观点的最新进展来解决问题湍流中嵌入的混沌和多尺度性质,用于严格的流量控制。关键思想是使用纳维-斯托克斯控制方程的所谓精确相干解来揭示湍流的可预测性和多尺度相互作用。获得的新知识将用于具有成本效益的湍流控制。为了实现这一目标,具体目标是:(i)使用小规模精确相干解来识别预测动力学,以及(ii)表征小规模和大规模精确相干解之间的多尺度相互作用,并利用它们进行流量控制。将采用直接数值模拟和大涡模拟分别模拟和分析小规模和大规模精确相干解,以及一套分析工具,包括线性不稳定性分析和解析分析。预测性和多尺度动力学存在的发现将导致更严格的控制策略,可以将湍流引导至理想的状态,从而通过控制较小的尺度来控制目标较大的尺度。由于各种工业流动系统中的能量损失很大程度上与湍流阻力相关,因此该项目对于充分利用湍流中的预测性和多尺度动力学,有效提高系统的能源效率具有深远的影响。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of Laminar-to-Turbulent Transition in a Wall-Bounded Channel Flow Up to Re=40,000
Re=40,000 以下的壁限通道流中层流到湍流转变的动力学
- DOI:10.1115/imece2022-94489
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Al Barwani, Mohsin;Park, Jae Sung
- 通讯作者:Park, Jae Sung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jae Sung Park其他文献
Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery.
多孔基质电穿孔后跨上皮电阻抗增加,实现无标记递送。
- DOI:
10.1002/smll.202310221 - 发表时间:
2024-02-23 - 期刊:
- 影响因子:13.3
- 作者:
Justin R. Brooks;Tyler C. Heiman;Sawyer R. Lorenzen;Ikhlaas Mungloo;S. Mirfendereski;Jae Sung Park;Ruiguo Yang - 通讯作者:
Ruiguo Yang
High-performance CO2-philic graphene oxide membranes under wet-conditions
- DOI:
10.1039/c4cc06207h - 发表时间:
2014-09 - 期刊:
- 影响因子:4.9
- 作者:
Hyo Won Kim;Hee Wook Yoon;Byung Min Yoo;Jae Sung Park;Kristofer L. Gleason;Benny D. Freeman;Ho Bum Park - 通讯作者:
Ho Bum Park
Assessment of two-parameter mixed models for large eddy simulations of transitional and turbulent flows
过渡流和湍流大涡模拟的双参数混合模型评估
- DOI:
10.1007/s12206-020-0119-2 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:1.6
- 作者:
Young Mo Lee;H. Hwang;Jae Hwa Lee;Jungil Lee;Jae Sung Park - 通讯作者:
Jae Sung Park
TV-watching enhancement and its medical trial for low vision people
低视力人群电视观看增强及其医学试验
- DOI:
10.1117/12.2675482 - 发表时间:
2023-10-04 - 期刊:
- 影响因子:0
- 作者:
Jae Sung Park;Jongho Kim;Younghoon Jeong;Youngsu Moon - 通讯作者:
Youngsu Moon
Effects of exposure to electromagnetic field from 915 MHz radiofrequency identification system on circulating blood cells in the healthy adult rat
暴露于 915 MHz 射频识别系统电磁场对健康成年大鼠循环血细胞的影响
- DOI:
10.1002/bem.22093 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Hye Sun Kim;Jae Sung Park;Y. Jin;Hyung Do Choi;Jong Hwa Kwon;J. Pack;Nam Kim;Y. Ahn - 通讯作者:
Y. Ahn
Jae Sung Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jae Sung Park', 18)}}的其他基金
Exploring Flow Enhancements of Hydrophobic Particles in Confined Fluid Flow
探索疏水颗粒在受限流体流动中的流动增强
- 批准号:
2154788 - 财政年份:2022
- 资助金额:
$ 50.68万 - 项目类别:
Standard Grant
Nonlinear electrokinetics at polarizable soft interfaces: implications for cell membrane characterization and nanopore transport
可极化软界面的非线性电动学:对细胞膜表征和纳米孔传输的影响
- 批准号:
1936065 - 财政年份:2020
- 资助金额:
$ 50.68万 - 项目类别:
Standard Grant
RII Track-4: Finding Order in Chaos: a Systematic Approach to Turbulence Control for Drag Reduction
RII Track-4:在混沌中寻找秩序:减少阻力的湍流控制的系统方法
- 批准号:
1832976 - 财政年份:2018
- 资助金额:
$ 50.68万 - 项目类别:
Standard Grant
RII Track-4: Finding Order in Chaos: a Systematic Approach to Turbulence Control for Drag Reduction
RII Track-4:在混沌中寻找秩序:减少阻力的湍流控制的系统方法
- 批准号:
1832976 - 财政年份:2018
- 资助金额:
$ 50.68万 - 项目类别:
Standard Grant
相似国自然基金
基于大环单体的主链可降解开环易位聚合物的可控合成
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用数值 Green 函数求解开腔体正反散射问题的算法研究
- 批准号:11626054
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
细菌DNA复制解旋酶水解ATP和解开dsDNA的偶联机制研究
- 批准号:31270783
- 批准年份:2012
- 资助金额:63.0 万元
- 项目类别:面上项目
核酸高级结构生成与解开的动力学及其在动态条件下与蛋白质作用的研究
- 批准号:20572082
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Unraveling the functional diversity of B cells in health and disease
揭示 B 细胞在健康和疾病中的功能多样性
- 批准号:
10726375 - 财政年份:2023
- 资助金额:
$ 50.68万 - 项目类别:
Unraveling the role of endothelium in chemotherapy-induced cardiotoxicity
揭示内皮在化疗引起的心脏毒性中的作用
- 批准号:
10340657 - 财政年份:2022
- 资助金额:
$ 50.68万 - 项目类别:
Unraveling the topological architecture and phenotypic contexture of structural variation
揭示结构变异的拓扑结构和表型背景
- 批准号:
10356208 - 财政年份:2021
- 资助金额:
$ 50.68万 - 项目类别:
Unraveling KLF4 dependency in metastatic osteosarcoma
揭示转移性骨肉瘤中 KLF4 的依赖性
- 批准号:
9910625 - 财政年份:2020
- 资助金额:
$ 50.68万 - 项目类别:
Unraveling KLF4 dependency in metastatic osteosarcoma
揭示转移性骨肉瘤中 KLF4 的依赖性
- 批准号:
10579953 - 财政年份:2020
- 资助金额:
$ 50.68万 - 项目类别: