CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
基本信息
- 批准号:2338642
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to improve state estimation and anomaly detection problems for power system operators. The project will bring transformative changes in how operators detect the system states and abnormal events, including cyber-attacks. This will be achieved by using adaptive graph-based and physics-based methods. The intellectual merits of the project include 1) Development of spatial-temporal graph neural networks (ST-GNN) for state estimation and anomaly detection, 2) Integration of physics into the ST-GNN, 3) Correlation of IT/OT events, and 4) Development of state estimation and anomaly detection at scale. The broader impacts of the project include spurring the interests of future female engineers in sustainable energy and cyber-physical security through Clarkson's Horizons Program, supporting underrepresented undergraduates in research, enhancing collaboration between national labs and universities, and enhancing awareness of utilities through annual workshops for utility students. Timely identification and mitigation of emerging cyber-physical system (CPS) risks necessitate more sophisticated and resilient tools for state estimation and anomaly detection employed by grid operators. The primary objective of this CAREER project is to improve the state estimation and anomaly detection capabilities of power system operators through adaptive graph-based and physics-based methods. This objective will be realized through a meticulously crafted work plan aimed at (1) improving the precision and robustness of state estimation using physics-informed learning on graphs and (2) enhancing anomaly detection while achieving scalability through hybrid and distributed approaches. These goals will be pursued through four key research activities: 1) Developing spatial-temporal graph neural networks for enhanced state estimation, 2) Establishing a physics-informed framework to handle imbalanced data, 3) Integrating information technology (IT) data with operational technology (OT) data to bolster anomaly detection, and 4) Creating distributed methods for achieving scalable state estimation and anomaly detection. On the educational front, the aim is to broaden and strengthen the power engineering workforce by encouraging women to participate in the field, training the next generation of power engineers, and elevating the skills and awareness of current power engineers to effectively navigate emerging CPS threats in power system operations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF CAREER 项目旨在改善电力系统运营商的状态估计和异常检测问题。该项目将为运营商检测系统状态和异常事件(包括网络攻击)的方式带来革命性的变化。这将通过使用基于自适应图和基于物理的方法来实现。该项目的智力优点包括 1) 开发用于状态估计和异常检测的时空图神经网络 (ST-GNN),2) 将物理学集成到 ST-GNN,3) IT/OT 事件的关联,以及4)大规模状态估计和异常检测的发展。该项目的更广泛影响包括通过克拉克森的地平线计划激发未来女性工程师对可持续能源和网络物理安全的兴趣,支持代表性不足的本科生进行研究,加强国家实验室和大学之间的合作,以及通过年度研讨会提高公用事业公司的意识实用学生。 及时识别和缓解新兴网络物理系统(CPS)风险需要电网运营商使用更复杂、更有弹性的状态估计和异常检测工具。该职业项目的主要目标是通过基于自适应图和基于物理的方法来提高电力系统运营商的状态估计和异常检测能力。这一目标将通过精心设计的工作计划来实现,该计划旨在(1)使用基于物理的图学习来提高状态估计的精度和鲁棒性;(2)增强异常检测,同时通过混合和分布式方法实现可扩展性。这些目标将通过四项关键研究活动来实现:1)开发时空图神经网络以增强状态估计,2)建立物理信息框架来处理不平衡数据,3)将信息技术(IT)数据与操作技术相集成(OT) 数据来支持异常检测,4) 创建分布式方法来实现可扩展的状态估计和异常检测。在教育方面,目标是通过鼓励女性参与该领域、培训下一代电力工程师以及提高当前电力工程师的技能和意识来扩大和加强电力工程队伍,以有效应对新兴的 CPS 威胁。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tuyen Vu其他文献
Equivalent Model of Photovoltaic System Dynamics Using Neural Network
使用神经网络的光伏系统动力学等效模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rifat Hossain;S. Paudyal;Tuyen Vu - 通讯作者:
Tuyen Vu
Real-time hybrid controls of energy storage and load shedding for integrated power and energy systems of ships
船舶综合电力和能源系统的储能和减载实时混合控制
- DOI:
10.1016/j.epsr.2024.110191 - 发表时间:
2024-03-02 - 期刊:
- 影响因子:0
- 作者:
Linh Vu;Thai;B. L. Nguyen;Md Isfakul Anam;Tuyen Vu - 通讯作者:
Tuyen Vu
Frequency Response of Grid-Forming and Following Inverters-Based Microgrid Supplied by Onshore Electrified Ships
陆上电气化船舶并网逆变器微电网的频率响应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Quang;Linh Tran;Thanh Vo;Tuyen Vu;Bảo - 通讯作者:
Bảo
An Advanced Fuel Efficiency Optimization Model with Fractional Programming
采用分数式编程的高级燃油效率优化模型
- DOI:
- 发表时间:
2023-10-27 - 期刊:
- 影响因子:0
- 作者:
Md Isfakul Anam;Tuyen Vu - 通讯作者:
Tuyen Vu
Safe Exploration Reinforcement Learning for Load Restoration using Invalid Action Masking
使用无效动作屏蔽进行负载恢复的安全探索强化学习
- DOI:
10.1109/pesgm52003.2023.10253213 - 发表时间:
2023-07-16 - 期刊:
- 影响因子:0
- 作者:
Linh Vu;Tuyen Vu;Thanh Vu;Amal Srivastava - 通讯作者:
Amal Srivastava
Tuyen Vu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tuyen Vu', 18)}}的其他基金
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
量子引力效应及其天体物理检验
- 批准号:12375049
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
局域畸变结构调控对KNN单晶压电性能影响及其物理机制的研究
- 批准号:12374082
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
循环扰动下页岩储层物理力学性质演化规律与渗流机理研究
- 批准号:42307224
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
网络攻击下的信息物理系统分布式攻击检测与安全优化调度
- 批准号:62373226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向自监督单目深度估计的物理后门攻击与防御方法研究
- 批准号:62302111
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Composite Physics-Informed Learning of Dynamic Systems
职业:动态系统的复合物理知情学习
- 批准号:
2238296 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: CAS- Climate: Climate Adaptation Pathways in Eco-Hydrologic Systems with Physics-Informed Machine Learning
职业:CAS-气候:基于物理的机器学习在生态水文系统中的气候适应途径
- 批准号:
2144332 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant