CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
基本信息
- 批准号:2336840
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The long-term goal of this project is to build flexible models and efficient algorithms for large-scale, multi-agent, and uncertain cyber-physical systems. In settings such as traffic management, for example, practitioners face fundamental challenges due to complex dynamics, hierarchical influence, noncooperative actors, and hard-to-model uncertainty. Strong simplifying assumptions have become essential: for instance, many theoretical models of road networks take the form of static, deterministic, and/or aggregative games. In these instances, static assumptions make it possible to predict the aggregate impact of decisions such as tolling on traffic patterns. However, neglecting temporal dynamics and feedback effects can lead city planners to make myopic decisions, which may have unintended consequences as drivers adapt to one another's behavior over time. This project develops theoretical and algorithmic techniques to address some of the underlying challenges and will also support mentoring of graduate and undergraduate researchers, development of undergraduate course material, and outreach to local underrepresented communities. This NSF CAREER project aims to develop a sound algorithmic basis for game-theoretic inference and design in dynamic and multi-agent CPS. The specific goals of this project are threefold. The first goal is to formalize and solve a set of structural inference problems in noncooperative games that arise in transportation. For example, one such problem is to discover hierarchies of influence among decision-makers from observations of their actions. The second goal of this project is to design dynamic, time-varying mechanisms which influence agents’ decisions and induce desired outcomes. In transportation systems, these mechanisms correspond to tolls, bus routes, timetables, etc. The third and final goal considers stochastic variants of the aforementioned games and aims to develop a computationally-tractable theory of time-varying, feedback decision-making in these settings. This project will enable the analysis and design of cyber-physical systems which interact with one another in complex hierarchies and enable planners and regulators to guide these systems toward desired outcomes. Theory and algorithms will be validated in a physical laboratory testbed which emulates urban driving, via large-scale simulation of traffic in the city of Austin and using French air traffic management data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的长期目标是为大规模、多智能体和不确定的网络物理系统构建灵活的模型和高效的算法,例如,在交通管理等环境中,从业者面临着由于复杂的动态而面临的根本挑战。 、等级影响、非合作参与者和难以建模的不确定性已变得至关重要:例如,道路网络的许多理论模型采用静态、确定性和/或聚合博弈的形式。假设使得预测总体影响成为可能然而,忽视时间动态和反馈效应可能会导致城市规划者做出短视的决策,随着时间的推移,司机会适应彼此的行为,这可能会产生意想不到的后果。该 NSF 职业项目旨在为博弈论推理和研究奠定良好的算法基础。该项目的具体目标有三个:形式化并解决非合作博弈中出现的一组结构推理问题,例如,其中一个问题是发现层次结构。该项目的第二个目标是设计动态的、随时间变化的机制,影响代理人的决策并产生期望的结果。在交通系统中,这些机制对应于通行费、公交路线、时刻表等第三个也是最后一个目标考虑了上述游戏的随机变体,旨在开发一种可计算处理的时变反馈决策理论,该项目将能够分析和设计与之交互的网络物理系统。理论和算法将在模拟城市驾驶的物理实验室测试台中通过对奥斯汀市交通的大规模模拟并使用法国空气进行验证。交通管理该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fridovich-Keil其他文献
David Fridovich-Keil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fridovich-Keil', 18)}}的其他基金
Collaborative Research: Interaction-aware Planning and Control for Robotic Navigation in the Crowd
协作研究:人群中机器人导航的交互感知规划和控制
- 批准号:
2211548 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于“数智情绪滋养”视角的延展实境应急培训系统涵义游戏化交互设计理论与实证研究
- 批准号:72371064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于双系统加工理论的网络游戏障碍的亚型及特异性干预研究
- 批准号:32371142
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
目标框架理论视角下游戏化示能性对绿色消费行为的影响机制研究
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:面上项目
基于传统心学理论的青少年网络游戏成瘾的影响机制与干预研究
- 批准号:71904034
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: CAS- Climate: An altruistic game theoretic framework to characterize environmental responsiveness of residential electricity consumption
职业:CAS-气候:描述住宅用电环境响应的利他博弈理论框架
- 批准号:
2238381 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Multi-scale Multi-population Mean Field Game-Theoretic Framework for the Autonomous Mobility Ecosystem
职业:自主移动生态系统的多尺度多群体平均场博弈论框架
- 批准号:
1943998 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Game-Theoretic Analysis and Design for Cross-Layer Cyber-Physical System Security and Resilience
职业:跨层网络物理系统安全性和弹性的博弈论分析和设计
- 批准号:
1847056 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Game Theoretic Methods for Multiagent Coordination
职业:多智能体协调的博弈论方法
- 批准号:
1638214 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Game Theoretic Methods for Multiagent Coordination
职业:多智能体协调的博弈论方法
- 批准号:
1351866 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant