CAREER: Multi-scale Multi-population Mean Field Game-Theoretic Framework for the Autonomous Mobility Ecosystem
职业:自主移动生态系统的多尺度多群体平均场博弈论框架
基本信息
- 批准号:1943998
- 负责人:
- 金额:$ 58.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will contribute to the improved well-being of individuals and increased U.S. economic competitiveness by assisting in the development of control methods for autonomous vehicles (AV). AVs are anticipated to improve traffic safety and efficiency. In the near future, however, AVs will operate on public roads in mixed traffic and will have to manage complex interactions with human-driven vehicles (HV). This award supports research that will lead to control paradigms for AVs operating in mixed traffic conditions, particularly when traffic is dense and safe operations require effective automated car-following and lane-changing controls. The project is expected to contribute to a better understanding of the future transportation ecosystem and the controls needed to guide the ecosystem toward an equilibrium that benefits society. The accompanying educational plan aims to fundamentally redesign the transportation engineering curricula via new graduate course development and outreach programs, leveraging the COSMOS testbed deployed in Columbia’s neighborhood. The outcomes of this research will be assessed by an advisory committee of select leaders from academia, public agencies, and the AV industry. This research develops a new modeling framework that builds from the fields of game theory, dynamic control, data science, and transportation engineering. Mean-field game-theoretic methods are used to characterize the dynamic behavior of the mixed traffic system and to examine optimal policies associated with infrastructure planning and the regulation of technology. This framework provides a rigorous foundation for the development of a multi-agent simulation platform to inform policy and practice as part of the development of the transportation ecosystem. The analytical framework leverages the state-of-the-art techniques from game theory and AI methods. The research addresses an important gap in the autonomous driving control literature in which AVs are essentially modelled as human drivers that can "react" faster, "see" farther, and "know" the road environment better.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展 (CAREER) 拨款将通过协助开发自动驾驶车辆 (AV) 的控制方法来改善个人福祉并提高美国的经济竞争力,预计将提高交通安全和效率。然而,在不久的将来,自动驾驶汽车将在混合交通的公共道路上运行,并且必须管理与人类驾驶车辆 (HV) 的复杂交互。该奖项支持将导致自动驾驶汽车在混合交通条件下运行的控制范例的研究。当交通密集且安全的运营需要有效的自动跟车和变道控制,该项目预计将有助于更好地了解未来的交通生态系统以及引导生态系统实现有利于社会的平衡所需的控制。通过新的研究生课程开发和推广计划,利用哥伦比亚附近部署的 COSMOS 测试平台,从根本上重新设计交通工程课程。这项研究的成果将由来自学术界、公共机构和自动驾驶行业的精选领导人组成的咨询委员会进行评估。开发了一个基于博弈论、动态控制、数据科学和交通工程领域的新建模框架,使用平均场博弈论方法来表征混合交通系统的动态行为并检查与此相关的最优策略。该框架为多主体模拟平台的开发提供了严格的基础,作为交通生态系统发展的一部分,为政策和实践提供信息。该研究涉及博弈论和人工智能方法的艺术技巧。自动驾驶控制文献中的一个重要空白,其中自动驾驶汽车本质上被建模为人类驾驶员,可以“反应”更快,“看得”更远,并且更好地“了解”道路环境。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ca(r)veat Emptor: Crowdsourcing Data to Challenge the Testimony of In-Car Technology
Ca(r)veat Emptor:众包数据挑战车载技术的见证
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Gless; S.
- 通讯作者:S.
Scalable traffic stability analysis in mixed-autonomy using continuum models
使用连续模型进行混合自治中的可扩展交通稳定性分析
- DOI:10.1016/j.trc.2020.01.007
- 发表时间:2020-02-01
- 期刊:
- 影响因子:8.3
- 作者:Kuang Huang;Xuan Di;Q. Du;Xi Chen
- 通讯作者:Xi Chen
Learning Dual Mean Field Games on Graphs
学习图上的对偶平均场博弈
- DOI:
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Chen, X.;Liu, S.;Di, X.
- 通讯作者:Di, X.
A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games
自动驾驶车辆速度控制的博弈论框架:连接微观微分博弈和宏观平均场博弈
- DOI:10.3934/dcdsb.2020131
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Huang, Kuang;Di, Xuan;Du, Qiang;Chen, Xi
- 通讯作者:Chen, Xi
Legal Framework for Rear-End Crashes in Mixed-Traffic Platooning: A Matrix Game Approach
混合交通队列追尾事故的法律框架:矩阵博弈方法
- DOI:10.3390/futuretransp3020025
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chen, Xu;Di, Xuan
- 通讯作者:Di, Xuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xuan Di其他文献
Stabilizing Traffic via Autonomous Vehicles: A Continuum Mean Field Game Approach
通过自动驾驶车辆稳定交通:连续平均场博弈方法
- DOI:
10.1109/itsc.2019.8917021 - 发表时间:
2019-06-04 - 期刊:
- 影响因子:0
- 作者:
Kuang Huang;Xuan Di;Q. Du;Xi Chen - 通讯作者:
Xi Chen
Social Learning for Sequential Driving Dilemmas
连续驾驶困境的社会学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Xu Chen;Xuan Di;Zechu Li - 通讯作者:
Zechu Li
Graphon Mean Field Games with a Representative Player: Analysis and Learning Algorithm
具有代表性玩家的图谱平均场博弈:分析和学习算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fuzhong Zhou;Chenyu Zhang;Xu Chen;Xuan Di - 通讯作者:
Xuan Di
Physics-Informed Deep Learning For Traffic State Estimation: A Survey and the Outlook
基于物理的深度学习用于交通状态估计:调查与展望
- DOI:
10.3390/a16060305 - 发表时间:
2023-03-03 - 期刊:
- 影响因子:2.3
- 作者:
Xuan Di;Rongye Shi;Zhaobin Mo;Yongjie Fu - 通讯作者:
Yongjie Fu
A restricted path-based ridesharing user equilibrium
基于受限路径的拼车用户均衡
- DOI:
10.1080/15472450.2019.1658525 - 发表时间:
2020 - 期刊:
- 影响因子:3.6
- 作者:
Meng Li;Xuan Di;Henry X.Liu;Hai-Jun Huang - 通讯作者:
Hai-Jun Huang
Xuan Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xuan Di', 18)}}的其他基金
SCC-IRG Track 1: Preparing for Future Pandemics: Subway Crowd Management to Minimize Airborne Transmission of Respiratory Viruses (Way-CARE)
SCC-IRG 第 1 轨道:为未来的流行病做好准备:地铁人群管理以最大限度地减少呼吸道病毒的空气传播 (Way-CARE)
- 批准号:
2218809 - 财政年份:2023
- 资助金额:
$ 58.41万 - 项目类别:
Continuing Grant
CPS: Medium: Hybrid Twins for Urban Transportation: From Intersections to Citywide Management
CPS:中:城市交通的混合双胞胎:从十字路口到全市管理
- 批准号:
2038984 - 财政年份:2021
- 资助金额:
$ 58.41万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Measuring the Impact of the Re-entry of Ride Sourcing in Austin, Texas: A Natural Experiment
RAPID/协作研究:衡量德克萨斯州奥斯汀重新进入乘车采购的影响:一项自然实验
- 批准号:
1745708 - 财政年份:2017
- 资助金额:
$ 58.41万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Measuring the Impact of the Re-entry of Ride Sourcing in Austin, Texas: A Natural Experiment
RAPID/协作研究:衡量德克萨斯州奥斯汀重新进入乘车采购的影响:一项自然实验
- 批准号:
1745708 - 财政年份:2017
- 资助金额:
$ 58.41万 - 项目类别:
Standard Grant
相似国自然基金
两类偏微分方程大规模离散系统的特征驱动的多水平算法及其新型解法器研究
- 批准号:12371373
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于粒球计算的多粒度大规模聚类算法研究
- 批准号:62306055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模多模态预训练的关键问题研究
- 批准号:62376274
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于模块化多电平换流器技术的大规模锂电储能系统能量管控理论与方法研究
- 批准号:62303017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模多模态图数据的高内聚社区挖掘关键技术研究
- 批准号:62372013
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 58.41万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 58.41万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 58.41万 - 项目类别:
Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
- 批准号:
2338386 - 财政年份:2024
- 资助金额:
$ 58.41万 - 项目类别:
Standard Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
- 批准号:
2237663 - 财政年份:2023
- 资助金额:
$ 58.41万 - 项目类别:
Continuing Grant