Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
基本信息
- 批准号:2334624
- 负责人:
- 金额:$ 21.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project designs software-hardware collaborative mechanisms to boost the execution efficiency of 3D perception (point cloud) algorithms by an order of magnitude. Achieving this goal requires designing fundamentally new algorithmic primitives, offline and run-time systems, and hardware architectures that tame the irregular computation and memory patterns in 3D perception algorithms. This research unlocks next-generation software innovation in emerging domains driven by 3D perception, such as autonomous driving, Augmented/Virtual Reality, and precision agriculture. The research agenda is complemented by an educational/outreach agenda. The PIs are (1) offering summer “introduction to computing” courses to high school students from the Rochester Central School District, (2) engaging students in RIT’s National Technical Institute for the Deaf program through experiencing 3D sensing and research activities, (3) introducing new courses/modules in both UR and RIT on 3D perception, both on algorithms and hardware systems, and (4) offering undergraduate students inclusive opportunities for hands-on experience in emerging application domains and hardware acceleration.This research project addresses the fundamental mismatch between the irregularities in point-cloud algorithms and today’s hardware architectures, which are primarily optimized for 2D image- and video-processing algorithms that are regular stencil pipelines operating on structured data. The key intellectual merit is the pursuit of new algorithms and system architectures that reduce/eliminate irregular computation and memory accesses in 3D perception. The technical contribution is three-fold: 1) efficient, yet generally applicable, hardware building blocks required to accelerate point cloud algorithms, 2) run-time systems that dynamically adapt to operating constraints (e.g., hardware resources, performance, energy) in an application-aware and data-aware manner, and 3) a new class of efficient-by-construction 3D perception algorithms that leverage the small data volume in single-beam point clouds. The algorithm-hardware co-designed system not only accelerates current 3D perception algorithms, but also provides a computing substrate so that 3D perception can be pervasively used as a building block in future application domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目设计了软件-硬件协作机制,以将 3D 感知(点云)算法的执行效率提高一个数量级。实现这一目标需要设计全新的算法原语、离线和运行时系统以及驯服的硬件架构。这项研究解锁了由 3D 感知驱动的新兴领域的下一代软件创新,例如自动驾驶、增强/虚拟现实和精准农业。 PI 还辅以教育/推广议程:(1) 为罗切斯特中央学区的高中生提供夏季“计算机概论”课程,(2) 让学生通过体验 3D 参与 RIT 国家聋人技术学院项目。传感和研究活动,(3) 在 UR 和 RIT 中引入关于 3D 感知的新课程/模块,包括算法和硬件系统,以及 (4) 为本科生提供新兴应用领域和硬件实践经验的包容性机会该研究项目解决了点云算法与当今硬件架构之间的根本不匹配问题,这些算法主要针对二维图像和视频处理算法进行优化,这些算法是在结构化数据上运行的常规模板管道。追求新的算法和系统架构,以减少/消除 3D 感知中的不规则计算和内存访问。技术贡献有三方面:1)加速点云算法所需的高效且普遍适用的硬件构建块。 2) 以应用感知和数据感知的方式动态适应操作约束(例如硬件资源、性能、能源)的运行时系统,以及 3) 一种新型的高效构建 3D 感知算法单束点云中的小数据量不仅加速了当前的3D感知,而且还为未来3D感知可以普遍用作构建块算法提供了计算基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Object Detection Based on Raw Bayer Images
基于原始拜耳图像的物体检测
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Lu; Guoyu
- 通讯作者:Guoyu
From Local to Holistic: Self-supervised Single Image 3D Face Reconstruction Via Multi-level Constraints
从局部到整体:通过多级约束进行自监督单图像 3D 人脸重建
- DOI:10.1109/iros47612.2022.9982284
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Lu, Yawen;Sarkis, Michel;Bi, Ning;Lu, Guoyu
- 通讯作者:Lu, Guoyu
Multi-view Geometry Consistency Network for Facial Micro-Expression Recognition From Various Perspectives
多视角面部微表情识别的多视角几何一致性网络
- DOI:10.1109/ijcnn55064.2022.9892565
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Parikh, Devarth;Lu, Yawen;Kasabov, Nikola;Lu, Guoyu
- 通讯作者:Lu, Guoyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoyu Lu其他文献
Deep Unsupervised Visual Odometry Via Bundle Adjusted Pose Graph Optimization
通过捆绑调整姿势图优化进行深度无监督视觉里程计
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Guoyu Lu - 通讯作者:
Guoyu Lu
Deep Unsupervised Visual Odometry Via Bundle Adjusted Pose Graph Optimization
通过捆绑调整姿势图优化进行深度无监督视觉里程计
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Guoyu Lu - 通讯作者:
Guoyu Lu
Computer vision enabled funnel adapted sensing tube (FAST) for power-free and pipette-free nucleic acid detection.
计算机视觉支持漏斗适配传感管 (FAST),用于无电源和无移液器核酸检测。
- DOI:
10.1039/d2lc00586g - 发表时间:
2022-09-16 - 期刊:
- 影响因子:6.1
- 作者:
Mengdi Bao;Shuhuan Zhang;Chad ten Pas;S. Dollery;Ruth V. Bushnell;F. Yuqing;Rui Liu;Guoyu Lu;G. Tobin;K. Du - 通讯作者:
K. Du
Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges
物联网 (IoT) 中的通用人工智能 (AGI):机遇与挑战
- DOI:
10.48550/arxiv.2309.07438 - 发表时间:
2023-09-14 - 期刊:
- 影响因子:0
- 作者:
Fei Dou;Jin Ye;Geng Yuan;Qin Lu;Wei Niu;Haijian Sun;Le Guan;Guoyu Lu;Gengchen Mai - 通讯作者:
Gengchen Mai
Molecular epidemiology and clinical characteristics of respiratory syncytial virus in hospitalized children during winter 2021–2022 in Bengbu, China
2021—2022年冬季蚌埠市住院儿童呼吸道合胞病毒分子流行病学及临床特征
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Limin Huang;Yuanyou Xu;Yanqing Yang;Hongming Dong;Qin Luo;Zhen Chen;Haijun Du;Guoyong Mei;Xinyue Wang;Yake Guan;Chihong Zhao;Jun Han;Guoyu Lu - 通讯作者:
Guoyu Lu
Guoyu Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoyu Lu', 18)}}的其他基金
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Continuing Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
- 批准号:
2334690 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
- 批准号:
2334246 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2126643 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
CRII: RI: Modeling and Understanding the Invisible World in Thermal Modality
CRII:RI:用热模态建模和理解无形世界
- 批准号:
2105257 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
- 批准号:
2104032 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
- 批准号:
2104032 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 21.49万 - 项目类别:
Standard Grant