Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
基本信息
- 批准号:2334028
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Given current crop productivity projections, agricultural practices will be inadequate to meet future global food demands. Humanity’s ability to address this problem will largely depend on the efficiency with which novel genetic diversity can be created and introduced into plant breeding programs. New genome editing techniques allow for a more precise introduction of genetic diversity, but the current methods are very slow and inefficient and only work in some crop species. This project aims to discover novel genome editing systems that can be more widely and quickly deployed in a large variety of crop species, to enhance plant breeding to make crops with higher yields and resistance to drought, pests, and extreme temperatures. The new tools will also be useful for orphan crop species that do not receive sufficient attention from the plant biotechnology industry. The project will also include a structured approach to involving undergraduate student researchers from diverse backgrounds through different programs at the two participating University of California campuses, UCLA and UC Berkeley. The project will also enable postdocs and graduate students on the project to gain experience in training students from diverse backgrounds.Recent progress in genome editing technology is poised to accelerate plant breeding programs by allowing for the precise introduction of specific changes to important plant genes. Despite this advance, a primary bottleneck remains: fast and effective delivery of the gene editing reagents into crop plants. The most common methods of delivery are to encode RNA-guided genome editors (e.g. CRISPR-Cas enzymes) within transgenes and use tissue culture and transformation approaches or to introduce CRISPR protein and guide RNAs directly into plant cells followed by tissue culture to regenerate plants. However, tissue culture methods require considerable time, resources, and technical expertise, and can cause unintended changes to the genome and epigenome. Furthermore, regenerating plants from tissue culture only works in a limited number of plant species and genotypes. Plant viruses are ideal vectors for the delivery of CRISPR systems to whole plants without the use of plant transformation or tissue culture. However, most viruses have a very small cargo capacity, which is insufficient to accommodate currently used CRISPR systems. We propose to discover and characterize hypercompact CRISPR systems that are small enough to be encoded in plant viruses for easy and fast editing of whole plants, which could be used in a wide range of important crop species. We will screen a large number of candidate compact gene editing systems from metagenomics data and test these systems in bacterial cells and plant cells. The goal will be to find hypercompact editing systems that match or exceed the efficiency of current large systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于目前的作物生产力预测,农业实践将不足以满足未来全球粮食需求,人类解决这一问题的能力将在很大程度上取决于新基因多样性的创造和引入植物育种计划的效率。为了更精确地引入遗传多样性,但目前的方法非常缓慢且低效,并且仅适用于某些作物物种。该项目旨在发现可以更广泛、更快速地应用于多种作物物种的新型基因组编辑系统。 ,加强植物育种,使农作物产量更高这些新工具对于没有得到植物生物技术行业足够重视的孤儿作物物种也将很有用,该项目还将包括一种结构化的方法,让来自不同背景的本科生研究人员参与其中。通过加州大学洛杉矶分校和加州大学伯克利分校两个参与项目的不同项目,该项目还将使该项目的博士后和研究生获得培训来自不同背景的学生的经验。基因组编辑技术的最新进展有望加速植物的发展。通过允许精确引入的育种计划尽管取得了这一进展,但主要的瓶颈仍然存在:将基因编辑试剂快速有效地传递到作物中,最常见的传递方法是编码 RNA 引导的基因组编辑器(例如 CRISPR-Cas 酶)。 )在转基因中并使用组织培养和转化方法,或将 CRISPR 蛋白并引导 RNA 直接引入植物细胞,然后进行组织培养以再生植物。然而,组织培养方法需要大量时间、资源和技术专业知识,并且可能会导致植物再生。此外,从组织培养中再生植物仅适用于有限数量的植物物种和基因型,植物病毒是将 CRISPR 系统传递到整个植物的理想载体,而无需使用植物转化或组织培养。然而,大多数病毒的负载容量非常小,不足以容纳当前使用的 CRISPR 系统,我们建议发现和表征超紧凑的 CRISPR 系统,这些系统足够小,可以在植物病毒中进行编码,以便轻松快速地编辑整个植物。我们将从宏基因组数据中筛选大量候选紧凑型基因编辑系统,并在细菌细胞和植物细胞中测试这些系统,目标是找到匹配或的超紧凑型编辑系统。超过当前大型系统的效率。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Doudna其他文献
Jennifer Doudna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Doudna', 18)}}的其他基金
I-Corps: Curing inherited diseases at the source through next-generation clustered regularly interspaced short palindromic repeat (CRISPR) systems
I-Corps:通过下一代簇状规则间隔短回文重复 (CRISPR) 系统从源头治愈遗传性疾病
- 批准号:
2227919 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
I-Corps: Curing inherited diseases at the source through next-generation clustered regularly interspaced short palindromic repeat (CRISPR) systems
I-Corps:通过下一代簇状规则间隔短回文重复 (CRISPR) 系统从源头治愈遗传性疾病
- 批准号:
2227919 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Mechanism of Acquired Immunity in Bacteria
细菌获得性免疫的机制
- 批准号:
1817593 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Mechanisms of Acquired Immunity in Bacteria
细菌获得性免疫的机制
- 批准号:
1244557 - 财政年份:2013
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Mechanism of Acquired Immunity in Bacteria
细菌获得性免疫的机制
- 批准号:
0950971 - 财政年份:2010
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
National Science Foundation: Alan T. Waterman Award
美国国家科学基金会:艾伦·T·沃特曼奖
- 批准号:
0244319 - 财政年份:2002
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
National Science Foundation: Alan T. Waterman Award
美国国家科学基金会:艾伦·T·沃特曼奖
- 批准号:
0003240 - 财政年份:2000
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334027 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: Optimization of Virus-based Delivery of Guide RNAs for Heritable Editing in Maize
合作研究:TRTech-PGR:基于病毒的引导 RNA 递送优化,用于玉米遗传编辑
- 批准号:
2303522 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310395 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
- 批准号:
2310396 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR: Optimization of Virus-based Delivery of Guide RNAs for Heritable Editing in Maize
合作研究:TRTech-PGR:基于病毒的引导 RNA 递送优化,用于玉米遗传编辑
- 批准号:
2303523 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant