Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports
用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用
基本信息
- 批准号:2327715
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Toxic oxyanions such as nitrate (NO3−) and perchlorate (ClO4−) are persistent pollutants that have been detected in groundwater, surface water, and drinking water sources in the United States and worldwide. The consumption of drinking water containing toxic oxyanions can adversely impact human health. Ion exchange (IX) and reverse osmosis (RO) are the best commercially available technologies for removing toxic oxyanions from drinking water sources. However, IX and RO do not destroy contaminants. In addition, they generate residuals including concentrated waste brines that need to be treated and/or disposed of. Water treatment by catalytic hydrogenation has emerged as a promising technology that can rapidly and effectively destroy toxic oxyanions in contaminated aqueous solutions including concentrated waste brines. The most effective oxyanion hydrogenation catalysts (e.g., Pd) are in the form of nanoparticles. Anchoring catalytic nanoparticles on supports such as activated carbon can facilitate their use in water treatment. In this project, the Principal Investigators (PIs) propose to carry out a fundamental study of the activity and reactivity of Pd nanoparticles immobilized onto supports that contain nitrogen groups in aqueous solutions and brines contaminated by toxic oxyanions with the goal of improving their performance. The successful completion of this research will benefit society through the development of new fundamental knowledge to advance the design and development of more efficient and cost-effective oxyanion hydrogenation catalysts for water treatment. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate student at the South Dakota School of Mines and Technology and one postdoctoral researcher at the University of Alabama.Palladium (Pd) nanoparticles have emerged as promising catalysts for reducing toxic oxyanions such as nitrate (NO3−) in aqueous solutions/brines and converting them to harmless by-products such as dinitrogen (N2) gas. Pd nanocatalysts are immobilized on support materials to 1) reduce nanoparticle aggregation and leaching and 2) facilitate catalyst handling and reuse. The presence of nitrogen-containing groups (e.g., amines) on the supports of Pd nanocatalysts have been found to significantly enhance catalyst performance (including activity, selectivity, and stability) during the hydrogenation of oxyanions in aqueous solutions. However, a fundamental understanding of the role of nitrogen-containing groups (NCGs) on the structure and performance of Pd hydrogenation nanocatalysts has remained elusive. To address these knowledge gaps, the Principal Investigators (PIs) of this project propose to carry out fundamental studies of the structure and performance of Pd nanocatalysts immobilized onto supports with NCGs. The specific objectives of the research are to 1) characterize and unravel the relationships between NCG support and catalyst structure and physicochemical properties; 2) investigate the impact of NCG support on the performance of Pd nanocatalysts for the reduction and conversion of oxyanions in model aqueous solutions and complex water matrices using hydrogen (H2) as reducing agent ; and 3) leverage the data collected in this project to develop machine learning (ML)-informed life cycle assessment (LCA) to guide catalyst design, synthesis, and optimization. The successful completion of this project has the potential to advance the practical implementation of Pd-based catalysts and reactors for the treatment of drinking water sources and concentrated waste brines contaminated with toxic oxyanions. To implement the education and training goals of the project, the PIs propose to leverage existing programs at the South Dakota School of Mines and Technology and the University of Alabama to 1) recruit and mentor graduate and undergraduate students from underrepresented groups to work on the project and 2) develop and implement outreach activities to advance diversity, equity, and inclusion in STEM education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
硝酸根 (NO3−) 和高氯酸根 (ClO4−) 等有毒氧阴离子是持久性污染物,已在美国和世界各地的地下水、地表水和饮用水源中检测到,饮用含有有毒氧阴离子的水可能会产生不利影响。离子交换 (IX) 和反渗透 (RO) 是去除饮用水源中有毒氧阴离子的最佳商业技术,但 IX 和 RO 不会破坏人类健康。此外,它们还会产生残留物,包括需要处理和/或处置的浓缩废盐水。通过催化氢化进行水处理已成为一种有前景的技术,可以快速有效地破坏包括浓缩废盐水在内的受污染水溶液中的有毒氧阴离子。最有效的氧阴离子氢化催化剂(例如,Pd)是纳米颗粒的形式,将催化纳米颗粒锚定在活性炭等载体上可以促进。在该项目中,主要研究人员 (PI) 提议对固定在含有氮基团的载体上的钯纳米粒子在受有毒氧阴离子污染的水溶液和盐水中的活性和反应性进行基础研究。这项研究的成功完成将通过开发新的基础知识来推进更高效、更具成本效益的水处理氧阴离子氢化催化剂的设计和开发,从而造福社会。通过学生教育和培训实现,包括指导南达科他州矿业与技术学院的一名研究生和一名本科生以及阿拉巴马大学的一名博士后研究员。钯 (Pd) 纳米粒子已成为减少有毒氧阴离子的有前途的催化剂将水溶液/盐水中的硝酸盐 (NO3−) 转化为二氮 (N2) 气体等无害副产品,并将其固定在支撑材料上。 1) 减少纳米颗粒聚集和浸出,2) 促进催化剂处理和再利用。已发现 Pd 纳米催化剂载体上存在的含氮基团(例如胺)可显着提高催化剂性能(包括活性、选择性和催化活性)。然而,对含氮基团 (NCG) 对 Pd 结构和性能的作用有一个基本的了解。为了解决这些知识空白,该项目的主要研究人员 (PI) 提议对 NCG 固定在载体上的 Pd 纳米催化剂的结构和性能进行基础研究。该研究的具体目标是 1。 ) 表征并阐明 NCG 载体与催化剂结构和物理化学性质之间的关系;2) 研究 NCG 载体对 Pd 纳米催化剂还原和转化性能的影响;使用氢气 (H2) 作为还原剂的模型水溶液和复杂水基质中的氧阴离子;3) 利用该项目中收集的数据开发基于机器学习 (ML) 的生命周期评估 (LCA),以指导催化剂设计、合成、该项目的成功完成有可能推动钯基催化剂和反应器在处理受有毒氧阴离子污染的饮用水源和浓废盐水方面的实际应用,以实现教育和培训目标。针对该项目,PI 建议利用南达科他州矿业与技术学院和阿拉巴马大学的现有项目 1) 招募和指导来自代表性不足群体的研究生和本科生参与该项目,以及 2) 制定和实施外展活动促进 STEM 教育的多样性、公平性和包容性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Ye其他文献
Do Firms’ Social Media Fake News Clarifications Mitigate the PEAD Anomaly? Evidence from a Policy Experiment in China
公司社交媒体虚假新闻澄清是否可以缓解 PEAD 异常?
- DOI:
10.1080/1540496x.2022.2128755 - 发表时间:
2022-11-28 - 期刊:
- 影响因子:4
- 作者:
Maobin Wang;Tao Ye - 通讯作者:
Tao Ye
A biometric identification system based on heart sound signal
一种基于心音信号的生物特征识别系统
- DOI:
10.1109/hsi.2010.5514589 - 发表时间:
2010-05-13 - 期刊:
- 影响因子:0
- 作者:
Tao Ye;Sun Xia;Zhang Hui;Wu Wei - 通讯作者:
Wu Wei
Efficiency and Safety Assurance of Six Fungicides Applied on Postharvest Cabbages Stored in a Natural Environment.
六种杀菌剂在自然环境下贮藏的采后卷心菜上的有效性和安全性保证。
- DOI:
10.1021/acs.jafc.8b03910 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:6.1
- 作者:
Guo;Juan Han;Tao Ye;Zhina Chen;Kegui Zhang - 通讯作者:
Kegui Zhang
Research highlights: under-recognized precursors and sources for disinfection byproduct formation
研究亮点:未被充分认识的消毒副产物形成的前体和来源
- DOI:
10.1039/c5ew90016f - 发表时间:
2015-07-08 - 期刊:
- 影响因子:1.2
- 作者:
Tao Ye;Danmeng Shuai;D. Tan - 通讯作者:
D. Tan
Improving wireless security through network diversity
通过网络多样性提高无线安全性
- DOI:
10.1145/1496091.1496096 - 发表时间:
2008-12-31 - 期刊:
- 影响因子:0
- 作者:
Tao Ye;D. Veitch;J. Bolot - 通讯作者:
J. Bolot
Tao Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Ye', 18)}}的其他基金
Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water
合作研究:控制饮用水中碘消毒副产物的高级氧化工艺
- 批准号:
2308711 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Probing Contrast Mechanisms of Super-resolution Atomic Force Microscopy for Imaging Multifunctional Self-assembled Monolayers
超分辨率原子力显微镜成像多功能自组装单层膜的对比机制探索
- 批准号:
1808213 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Directing and Probing DNA Origami Self-Assembly on Dynamic Surfaces
指导和探测动态表面上的 DNA 折纸自组装
- 批准号:
1410199 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EAGER: Dynamic Surface Interactions for Single Molecule Imaging of Biochemical Reactions
EAGER:生化反应单分子成像的动态表面相互作用
- 批准号:
1361066 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
无金属氮杂环分子催化材料设计及电催化乙炔半氢化性能研究
- 批准号:52373308
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
近常压下三元超导氢化物的结构设计与物性研究
- 批准号:12304031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
镁镍基氢化物表界面设计及储氢性能调控
- 批准号:52301277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高压下新型镧系富氢化合物超导体的理论设计
- 批准号:12374009
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
低倾点抗氧化天然酯绝缘油的组分设计及其氢化选择性机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
New precursors for diverse radical reactions enabled by potent photoreductants
强效光还原剂实现多种自由基反应的新前体
- 批准号:
10600016 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
- 批准号:
2045550 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
- 批准号:
10440504 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
- 批准号:
10608144 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
New Frontiers in Chemical Reactivity Via Catalytic Hydrogen Atom Transfer
通过催化氢原子转移实现化学反应的新领域
- 批准号:
10275111 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: