Collaborative Research: Advanced Oxidation Processes for the Control of Iodinated Disinfection Byproducts in Drinking Water
合作研究:控制饮用水中碘消毒副产物的高级氧化工艺
基本信息
- 批准号:2308711
- 负责人:
- 金额:$ 26.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical oxidants such as chlorine are widely utilized as disinfectants to inactivate waterborne pathogens in conventional water treatment processes. However, chlorine can react with various background constituents in drinking water sources (e.g., natural organic matter, bromide, and iodide) to form undesirable and toxic disinfection byproducts (DBPs). Currently, the US EPA regulates the maximum contaminant levels (MCLs) of 11 DBPs in drinking water including 4 trihalomethanes (THMs), 5 haloacetic acids (HAAs), bromate (BrO-3), and chlorite (ClO2-). Unregulated iodinated DBPs (I-DBPs) are receiving increased attention as they are significantly more toxic than the regulated DBPs and can damage cells and DNA. I-DBPs are formed when chemical oxidants such as chlorine react with iodine and iodinated compounds (e.g., iodinated X-ray contrast media) during the disinfection of drinking water sources. Thus, the oxidation and conversion of iodine and iodinated compounds (ICs) to iodate (IO3–), a nontoxic source of iodine nutritional trace element, has emerged as a promising unit process to control and mitigate the formation of I-DBPs in water treatment systems. However, the ability of current water treatment processes to efficiently convert iodine and ICs to iodate suffer from several challenges including the concurrent oxidation of bromide to bromate and toxic brominated DBPs, and the incomplete transformation of iodine/ICs to iodate which can also lead to the formation of I-DBPs and other regulated DBPs in the final product water. The goal of this collaborative project is to explore the development of advanced oxidation processes (AOPs) and integrated treatment trains that can efficiently oxidize and convert iodine and ICs to iodate while minimizing and preventing the formation of toxic I-DBPs and regulated DBPs in the product drinking water. The successful completion of this project will benefit society through the development of new fundamental knowledge that could guide the design and deployment of more effective water treatment processes and systems for mitigating and eliminating and the formation of I-DBPs during water disinfection. Additional benefits to society will be achieved through student education and training including the mentoring of one graduate student and one undergraduate at the South Dakota School of Mines and Technology and one graduate student at South Dakota State University. Iodinated disinfection byproducts (I-DBPs) formed in drinking water treatment are highly toxic at low concentrations and have been found to be cytotoxic and genotoxic. Iodide (I–) and iodinated X-ray contrast media (ICM) are the two most common iodine sources that can react with disinfectants (e.g., chlorine and chloramines) to produce I-DBPs during drinking water treatment. The oxidation and conversion of iodine and iodinated compounds such as ICM to iodate (IO3–), a nontoxic source of iodine nutritional trace element, has emerged as promising unit process to control and mitigate the formation of I-DBPs in water treatment systems. The overarching goal of this project is to advance the fundamental science and engineering knowledge required to control emerging I-DBPs and regulated DBPs in drinking water treatment through careful selection and optimization of advanced oxidation processes (AOPs) and integration of the AOPs with conventional processes. The core guiding hypothesis of the proposed research is that the successful control of emerging I-DBPs and regulated DBPs in drinking water treatment systems would require the efficient oxidation and conversion of iodine species and iodinated compounds to iodate, the careful management of bromide formation, and the partial (decent) removal of NOM (Natural Organic Matter), a DBP precursor, prior to disinfection. The specific objectives of the research are to 1) to investigate the utilization of AOPs, including ferrate (Fe[VI]), ozone (O3), UV photolysis, and UV photolysis with O3, to optimize the oxidation of iodine and ICM to iodate; 2) investigate the integration of AOPs with conventional processes, including chlorination, and activated carbon sorption, to minimize the formation of both I-DBPs and regulated DBPs; and 3) develop analytical methods for measurement of iodine species and I-DBPs to unravel and quantify the transformation pathways of iodine and ICM to I-DBPs and total organic iodine. The successful completion of this project has the potential to advance the fundamental understanding of the reactivity and transformations of inorganic and organic iodine species/compounds by AOPs to guide the design and development of iodine source-specific treatment processes for effective mitigation of both I-DBPs and regulated DBPs in water treatment systems. To implement the education and training goals of this project, the Principal Investigators (PIs) propose to leverage existing programs at the South Dakota School of Mines and Technology (SDSMT) and South Dakota State University to recruit and mentor female students to work on the project. In addition, the PIs plan to interact and collaborate with drinking water treatment professionals to address water quality challenges in South Dakota, engage in local community outreach events, and collaborate with the SDSMT Ivanhoe International Center to engage and mentor international students from the African continent.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氯等化学氧化剂在传统水处理过程中被广泛用作消毒剂,以灭活水中的病原体,然而,氯会与饮用水源中的各种背景成分(例如天然有机物、溴化物和碘化物)发生反应,形成不良且有毒的物质。目前,美国 EPA 规定了饮用水中 11 种 DBP 的最大污染物含量 (MCL),其中包括 4 种。三卤甲烷 (THM)、5 种卤乙酸 (HAAs)、溴酸盐 (BrO-3) 和亚氯酸盐 (ClO2-) 受到越来越多的关注,因为它们的毒性明显高于受管制的 DBP。当氯等化学氧化剂与碘和含碘化合物发生反应时,会形成 I-DBP,从而损伤细胞和 DNA。 (例如,碘化 X 射线造影剂)在饮用水源消毒过程中,碘和碘化物 (IC) 被氧化并转化为碘酸盐 (IO3–),这是一种无毒的碘营养微量元素来源。作为控制和减少水处理系统中 I-DBP 形成的一种有前途的单元工艺,然而,当前水处理工艺有效地将碘和 IC 转化为碘酸盐的能力受到影响。一些挑战包括溴化物同时氧化为溴酸盐和有毒的溴化 DBP,以及碘/IC 不完全转化为碘酸盐,这也可能导致最终产品水中形成 I-DBP 和其他受管制的 DBP。合作项目旨在探索先进氧化工艺 (AOP) 和综合处理系列的开发,这些工艺可以有效地将碘和 IC 氧化并转化为碘酸盐,同时最大限度地减少和防止饮用水产品中有毒 I-DBP 和受管制 DBP 的形成 该项目的成功完成将通过开发新的基础知识来造福社会,这些知识可以指导更有效的水处理工艺和系统的设计和部署,以减轻和影响。通过学生教育和培训,包括对南达科他州矿业与技术学院的一名研究生和一名本科生以及南达科他州的一名研究生进行指导,可以消除和形成水消毒过程中的 I-DBP,从而为社会带来额外的好处。州立大学。饮用水处理中形成的碘化消毒副产物 (I-DBP) 在低浓度下具有剧毒,并且已发现碘化物 (I–) 和碘化 X 射线造影剂 (ICM) 是两种最常见的碘。在饮用水处理过程中可与消毒剂(例如氯和氯胺)反应产生 I-DBP 的来源。碘化化合物,如 ICM 碘酸盐 (IO3–),一种无毒的碘营养微量元素来源,已成为控制和减轻水处理系统中 I-DBP 形成的有前景的单元工艺。该项目的总体目标是通过仔细选择和优化高级氧化工艺 (AOP) 以及将 AOP 与传统工艺相结合,提高饮用水处理中控制新兴 I-DBP 和调节 DBP 所需的基础科学和工程知识。本研究的核心指导假设是,要成功控制饮用水处理系统中新兴的 I-DBP 和受调节的 DBP,需要有效氧化和将碘物质和含碘化合物转化为碘酸盐,仔细管理溴化物的形成,以及在消毒之前部分(适当)去除 NOM(天然有机物),DBP 前体。该研究的具体目标是 1) 调查 AOP 的利用,包括。高铁酸盐 (Fe[VI])、臭氧 (O3)、UV 光解和 O3 的 UV 光解,以优化碘和 ICM 生成碘酸盐的氧化;2) 研究 AOP 与传统工艺(包括氯化和活性炭)的集成;吸附,以尽量减少 I-DBP 和受管制 DBP 的形成;3) 开发测量碘形态和 I-DBP 的分析方法,以阐明和量化碘和 ICM 转化为 I-DBP 和总有机碘的转化途径 该项目的成功完成有可能促进对 AOP 无机和有机碘物质/化合物的反应性和转化的基本了解,以指导设计和开发。有效缓解水处理系统中 I-DBP 和受管制 DBP 的特定碘源处理工艺的研究 为了实现该项目的教育和培训目标,首席研究员 (PI) 建议:利用南达科他州矿业与技术学院 (SDSMT) 和南达科他州立大学的现有项目来招募和指导女学生参与该项目。此外,PI 还计划与饮用水处理专业人员进行互动和合作,以解决水资源问题。南达科他州的质量挑战,参与当地社区外展活动,并与 SDSMT 艾芬豪国际中心合作,吸引和指导来自非洲大陆的国际学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Ye其他文献
Do Firms’ Social Media Fake News Clarifications Mitigate the PEAD Anomaly? Evidence from a Policy Experiment in China
公司社交媒体虚假新闻澄清是否可以缓解 PEAD 异常?
- DOI:
10.1080/1540496x.2022.2128755 - 发表时间:
2022-11-28 - 期刊:
- 影响因子:4
- 作者:
Maobin Wang;Tao Ye - 通讯作者:
Tao Ye
A biometric identification system based on heart sound signal
一种基于心音信号的生物特征识别系统
- DOI:
10.1109/hsi.2010.5514589 - 发表时间:
2010-05-13 - 期刊:
- 影响因子:0
- 作者:
Tao Ye;Sun Xia;Zhang Hui;Wu Wei - 通讯作者:
Wu Wei
Efficiency and Safety Assurance of Six Fungicides Applied on Postharvest Cabbages Stored in a Natural Environment.
六种杀菌剂在自然环境下贮藏的采后卷心菜上的有效性和安全性保证。
- DOI:
10.1021/acs.jafc.8b03910 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:6.1
- 作者:
Guo;Juan Han;Tao Ye;Zhina Chen;Kegui Zhang - 通讯作者:
Kegui Zhang
Research highlights: under-recognized precursors and sources for disinfection byproduct formation
研究亮点:未被充分认识的消毒副产物形成的前体和来源
- DOI:
10.1039/c5ew90016f - 发表时间:
2015-07-08 - 期刊:
- 影响因子:1.2
- 作者:
Tao Ye;Danmeng Shuai;D. Tan - 通讯作者:
D. Tan
Improving wireless security through network diversity
通过网络多样性提高无线安全性
- DOI:
10.1145/1496091.1496096 - 发表时间:
2008-12-31 - 期刊:
- 影响因子:0
- 作者:
Tao Ye;D. Veitch;J. Bolot - 通讯作者:
J. Bolot
Tao Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Ye', 18)}}的其他基金
Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports
用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用
- 批准号:
2327715 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Eco-Design of Hydrogenation Catalysts for Oxyanion Reduction: The Overlooked Roles of Nitrogen-Containing Groups on the Catalyst Supports
用于氧阴离子还原的加氢催化剂的生态设计:含氮基团在催化剂载体上被忽视的作用
- 批准号:
2327715 - 财政年份:2024
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Probing Contrast Mechanisms of Super-resolution Atomic Force Microscopy for Imaging Multifunctional Self-assembled Monolayers
超分辨率原子力显微镜成像多功能自组装单层膜的对比机制探索
- 批准号:
1808213 - 财政年份:2018
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Directing and Probing DNA Origami Self-Assembly on Dynamic Surfaces
指导和探测动态表面上的 DNA 折纸自组装
- 批准号:
1410199 - 财政年份:2014
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
EAGER: Dynamic Surface Interactions for Single Molecule Imaging of Biochemical Reactions
EAGER:生化反应单分子成像的动态表面相互作用
- 批准号:
1361066 - 财政年份:2013
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
相似国自然基金
先进运行模式中稳态远轴内部输运垒的调控机理研究
- 批准号:12375233
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: GEO OSE Track 1: Advanced cloud-based Data- and Visualization-Integrated Simulation EnviRonment (ADVISER) to Advance Computational Glaciology
合作研究:GEO OSE Track 1:先进的基于云的数据和可视化集成模拟环境 (ADVISER),以推进计算冰川学
- 批准号:
2324736 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Creating Windows Advanced Memory Corruption Attack and Defense Teaching Modules
协作研究:SaTC:EDU:创建 Windows 高级内存损坏攻击和防御教学模块
- 批准号:
2325452 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Workshop on Advanced Automated Systems, Contestability, and the Law
合作研究:会议:先进自动化系统、可竞争性和法律研讨会
- 批准号:
2349804 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328803 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 26.22万 - 项目类别:
Continuing Grant